Pulsating fluid induced dynamic instability of visco-double-walled carbon nano-tubes based on sinusoidal strain gradient theory using DQM and Bolotin method
详细信息    查看全文
  • 作者:A. Ghorbanpour Arani ; R. Kolahchi…
  • 关键词:Dynamic instability ; Pulsating fluid ; SSDBT ; Bolotin method ; Strain gradient theory
  • 刊名:International Journal of Mechanics and Materials in Design
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:12
  • 期:1
  • 页码:17-38
  • 全文大小:1,899 KB
  • 参考文献:Akgöz, B., Civalek, Ö.: A size-dependent shear deformation beam model based on the strain gradient elasticity theory. Int. J. Eng. Sci. 70, 1–14 (2013a). doi:10.​1016/​j.​ijengsci.​2013.​04.​004 CrossRef
    Akgöz, B., Civalek, Ö.: Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Compos. Struct. 98, 314–322 (2013b). doi:10.​1016/​j.​compstruct.​2012.​11.​020 CrossRef
    Akgöz, B., Civalek, Ö.: Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch. Appl. Mech. 82(3), 423–443 (2012). doi:10.​1007/​s00419-011-0565-5 CrossRef MATH
    Aydogdu, M.: A new shear deformation theory for laminated composite plates. Compos. Struct. 89(1), 94–101 (2009). doi:10.​1016/​j.​compstruct.​2008.​07.​008 CrossRef
    Bolotin, V.V.: The dynamic stability of elastic systems. In: The Dynamic Stability of Elastic Systems. Holden-Day, San Francisco (1964)
    Civalek, Ö.: Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic foundation. J. Sound Vib. 294, 966–980 (2006). doi:10.​1016/​j.​jsv.​2005.​12.​041 CrossRef
    Civalek, Ö.: Application ofdifferential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng. Struct. 26, 171–186 (2004). doi:10.​1016/​j.​engstruct.​2003.​09.​005 CrossRef
    Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983). doi:10.​1063/​1.​332803 CrossRef
    Fu, Y., Bi, R., Zhang, P.: Nonlinear dynamic instability of double-walled carbon nanotubes under periodic excitation. Acta Mech. Solida Sin. 22(3), 206–212 (2009). doi:10.​1016/​S0894-9166(09)60267-6 CrossRef
    Gheshlaghi, B., Hasheminejad, S.M.: Surface effects on nonlinear free vibration of nanobeams. Compos. B Eng. 42(4), 934–937 (2011). doi:10.​1016/​j.​compositesb.​2010.​12.​026 CrossRef
    Ghorbanpour Arani, A., Amir, S.: Electro-thermal vibration of visco-elastically coupled BNNT systems conveying fluid embedded on elastic foundation via strain gradient theory. Phys. B 419, 1–6 (2013). doi:10.​1016/​j.​physb.​2013.​03.​010 CrossRef
    Ghorbanpour Arani, A., Kolahchi, R., Vossough, H.: Nonlocal wave propagation in an embedded DWBNNT conveying fluid via strain gradient theory. Phys. B 407(21), 4281–4286 (2012). doi:10.​1016/​j.​physb.​2012.​07.​018 CrossRef
    Ghorbanpour Arani, A., Hashemian, M., Kolahchi, R.: Nonlocal Timoshenko beam model for dynamic stability of double-walled boron nitride nanotubes conveying nanoflow. Proc. Inst. Mech. Eng. (2013). doi:10.​1177/​1740349913513449​ MATH
    Ghorbanpour Arani, A., Amir, S., Dashti, P., Yousefi, M.: Flow-induced vibration of double bonded visco-CNTs under magnetic fields considering surface effect. Comput. Mater. Sci. 86, 144–154 (2014a). doi:10.​1016/​j.​commatsci.​2014.​01.​047 CrossRef
    Ghorbanpour Arani, A., Kolahchi, R., Hashemian, M.: Nonlocal surface piezoelasticity theory for dynamic stability of double-walled boron nitride nanotube conveying viscose fluid based on different theories. Proc. Inst. Mech. Eng. 28(17), 3258–3280 (2014b). doi:10.​1177/​0954406214527270​
    Gurtin, M., Ian Murdoch, A.: A continuum theory of elastic material surfaces. Arch. Rational. Mech. Anal. 57(4), 291–323 (1975). doi:10.​1007/​BF00261375 CrossRef MathSciNet MATH
    Gurtin, M.E., Ian Murdoch, A.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978). doi:10.​1016/​0020-7683(78)90008-2 CrossRef MATH
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)CrossRef
    Karama, M., Afaq, K.S., Mistou, S.: Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. Int. J. Solids Struct. 40(6), 1525–1546 (2003). doi:10.​1016/​S0020-7683(02)00647-9 CrossRef MATH
    Kaviani, F., Mirdamadi, H.R.: Wave propagation analysis of carbon nano-tube conveying fluid including slip boundary condition and strain/inertial gradient theory. Comput. Struct. 116, 75–87 (2013). doi:10.​1016/​j.​compstruc.​2012.​10.​025 CrossRef
    Khodami Maraghi, Z., Ghorbanpour Arani, A., Kolahchi, R., Amir, S., Bagheri, M.R.: Nonlocal vibration and instability of embedded DWBNNT conveying viscose fluid. Compos. B 45(1), 423–432 (2013). doi:10.​1016/​j.​compositesb.​2012.​04.​066 CrossRef
    Kiani, K.: Vibration behavior of simply supported inclined single-walled carbon nanotubes conveying viscous fluids flow using nonlocal Rayleigh beam model. Appl. Math. Model. 37(4), 1836–1850 (2013). doi:10.​1016/​j.​apm.​2012.​04.​027 CrossRef MathSciNet
    Kiani, K.: Vibration and instability of a single-walled carbon nanotube in a three-dimensional magnetic field. J. Phys. Chem. Solids 75(1), 15–22 (2014). doi:10.​1016/​j.​jpcs.​2013.​07.​022 CrossRef MathSciNet
    Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003). doi:10.​1016/​S0022-5096(03)00053-X CrossRef MATH
    Lanhe, W., Hongjun, W., Daobin, W.: Dynamic stability analysis of FGM plates by the moving least squares differential quadrature method. Compos. Struct. 77(3), 383–394 (2007). doi:10.​1016/​j.​compstruct.​2005.​07.​011 CrossRef
    Lei, X.-W., Natsuki, T., Shi, J.-X., Ni, Q.-Q.: Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Compos. B 43(1), 64–69 (2012). doi:10.​1016/​j.​compositesb.​2011.​04.​032 CrossRef
    Lei, J., He, Y., Zhang, B., Gan, Z., Zeng, P.: Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory. Int. J. Eng. Sci. 72, 36–52 (2013a). doi:10.​1016/​j.​ijengsci.​2013.​06.​012 CrossRef
    Lei, Y., Adhikari, S., Friswell, M.I.: Vibration of nonlocal Kelvin–Voigt viscoelastic damped Timoshenko beams. Int. J. Eng. Sci. 66–67, 1–13 (2013b). doi:10.​1016/​j.​ijengsci.​2013.​02.​004 CrossRef MathSciNet
    Lei, Y., Murmu, T., Adhikari, S., Friswell, M.I.: Dynamic characteristics of damped viscoelastic nonlocal Euler-Bernoulli beams. Eur. J. Mech. A 42, 125–136 (2013c). doi:10.​1016/​j.​euromechsol.​2013.​04.​006 CrossRef MathSciNet
    Levinson, M.: A new rectangular beam theory. J. Sound Vib. 74(1), 81–87 (1981). doi:10.​1016/​0022-460X(81)90493-4 CrossRef MATH
    Li, J., Wu, Z., Kong, X., Li, X., Wu, W.: Comparison of various shear deformation theories for free vibration of laminated composite beams with general lay-ups. Compos. Struct. 108, 767–778 (2014). doi:10.​1016/​j.​compstruct.​2013.​10.​011 CrossRef
    Liang, F., Su, Y.: Stability analysis of a single-walled carbon nanotube conveying pulsating and viscous fluid with nonlocal effect. Appl. Math. Model. 37(10–11), 6821–6828 (2013). doi:10.​1016/​j.​apm.​2013.​01.​053 CrossRef MathSciNet
    Lim, C., Li, C., Yu, J.-L.: Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach. Acta. Mech. Sin. 26(5), 755–765 (2010)CrossRef MathSciNet MATH
    Malekzadeh, P., Shojaee, M.: Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams. Compos. B 52, 84–92 (2013). doi:10.​1016/​j.​compositesb.​2013.​03.​046 CrossRef
    Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965). doi:10.​1016/​0020-7683(65)90006-5 CrossRef
    Mirramezani, M., Mirdamadi, H.R., Ghayour, M.: Innovative coupled fluid–structure interaction model for carbon nano-tubes conveying fluid by considering the size effects of nano-flow and nano-structure. Comput. Mater. Sci. 77, 161–171 (2013). doi:10.​1016/​j.​commatsci.​2013.​04.​047 CrossRef
    Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51(4), 745–752 (1984). doi:10.​1115/​1.​3167719 CrossRef MATH
    Şimşek, M., Reddy, J.N.: Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013). doi:10.​1016/​j.​ijengsci.​2012.​12.​002 CrossRef
    Soldatos, K.P.: A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 94(3–4), 195–220 (1992). doi:10.​1007/​BF01176650 CrossRef MathSciNet MATH
    Terrones, M.: Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu. Rev. Mater. Res. 33(1), 419–501 (2003). doi:10.​1146/​annurev.​matsci.​33.​012802.​100255 CrossRef
    Thai, H.-T., Vo, T.P.: A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 54, 58–66 (2012). doi:10.​1016/​j.​ijengsci.​2012.​01.​009 CrossRef MathSciNet
    Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci. 29(8), 901–916 (1991). doi:10.​1016/​0020-7225(91)90165-Y CrossRef MATH
    Wang, L.: A modified nonlocal beam model for vibration and stability of nanotubes conveying fluid. Phys. E 44(1), 25–28 (2011). doi:10.​1016/​j.​physe.​2011.​06.​031 CrossRef
    Wang, H., Dong, K., Men, F., Yan, Y.J., Wang, X.: Influences of longitudinal magnetic field on wave propagation in carbon nanotubes embedded in elastic matrix. Appl. Math. Model. 34(4), 878–889 (2010). doi:10.​1016/​j.​apm.​2009.​07.​005 CrossRef MathSciNet MATH
    Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002). doi:10.​1016/​S0020-7683(02)00152-X CrossRef MATH
  • 作者单位:A. Ghorbanpour Arani (1) (2)
    R. Kolahchi (1)
    M. Mosayyebi (1)
    M. Jamali (1)

    1. Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
    2. Institute of Nanoscience & Nanotechnology, University of Kashan, Kashan, Iran
  • 刊物类别:Engineering
  • 刊物主题:Mechanical Engineering
    Engineering Design
    Continuum Mechanics and Mechanics of Materials
    Materials Science
  • 出版者:Springer Netherlands
  • ISSN:1573-8841
文摘
This research deals with the dynamic instability analysis of double-walled carbon nanotubes (DWCNTs) conveying pulsating fluid under 2D magnetic fields based on the sinusoidal shear deformation beam theory (SSDBT). In order to present a realistic model, the material properties of DWCNTs are assumed viscoelastic using Kelvin–Voigt model. Considering the strain gradient theory for small scale effects, a new formulation of the SSDBT is developed through the Gurtin–Murdoch elasticity theory in which the effects of surface stress are incorporated. The surrounding elastic medium is described by a visco-Pasternak foundation model, which accounts for normal, transverse shear and damping loads. The van der Waals interactions between the adjacent walls of the nanotubes are taken into account. The size dependent motion equations and corresponding boundary conditions are derived based on the Hamilton’s principle. The differential quadrature method in conjunction with Bolotin method is applied for obtaining the dynamic instability region. The detailed parametric study is conducted, focusing on the combined effects of the nonlocal parameter, magnetic field, visco-Pasternak foundation, Knudsen number, surface stress and fluid velocity on the dynamic instability of DWCNTs. The results depict that the surface stress effects on the dynamic instability of visco-DWCNTs are very significant. Numerical results of the present study are compared with available exact solutions in the literature. The results presented in this paper would be helpful in design and manufacturing of nano/micro mechanical systems in advanced biomechanics applications with magnetic field as a parametric controller. Keywords Dynamic instability Pulsating fluid SSDBT Bolotin method Strain gradient theory

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700