Conduit margin heating and deformation during the AD 1886 basaltic Plinian eruption at Tarawera volcano, New Zealand
详细信息    查看全文
  • 作者:Jenny Schauroth ; Fabian B. Wadsworth ; Ben Kennedy
  • 关键词:Pyroclastic dyke ; Volcanic conduit ; Magma–rock interaction ; Strain localisation ; Wall rock heating
  • 刊名:Bulletin of Volcanology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:78
  • 期:2
  • 全文大小:12,238 KB
  • 参考文献:Allen SR, McPhie J (2003) Phenocryst fragments in rhyolitic lavas and lava domes. J Volcanol Geotherm Res 126(3):263–283CrossRef
    Ashwell PA (2013) Controls on rhyolite lava dome eruptions in the Taupo Volcanic Zone. PhD Thesis (unpublished) University of Canterbury, Christchurch, New Zealand
    Ashwell PA, Kendrick JE, Lavallée Y, Kennedy BM, Hess K-U, von Aulock FW, Wadsworth FB, Vasseur J, Dingwell DB (2015) Permeability of compacting porous lavas. J Geophys Res Solid Earth 120(3):1605–1622CrossRef
    Bagdassarov NS, Dingwell DB (1994) Thermal properties of vesicular rhyolite. J Volcanol Geotherm Res 60(2):179–191CrossRef
    Bell TH (1979) The deformation and recrystallization of biotite in the Woodroffe Thrust mylonite zone. Tectonophysics 58(1–2):139–158CrossRef
    Carey RJ, Houghton BF, Sable JE, Wilson CJN (2007) Contrasting grain size and componentry in complex proximal deposits of the 1886 Tarawera basaltic Plinian eruption. Bull Volcanol 69(8):903–926CrossRef
    Carrigan CR, Schubert G, Eichelberger JC (1992) Thermal and dynamical regimes of single‐ and two‐phase magmatic flow in dikes. Journal of Geophysical Research: Solid Earth (1978–2012) 97(B12):17377–17392
    Castro JM, Cordonnier B, Tuffen H, Tobin MJ, Puskar L, Martin MC, Bechtel HA (2012a) The role of melt-fracture degassing in defusing explosive rhyolite eruptions at volcán Chaitén. Earth Planet Sci Lett 333:63–69CrossRef
    Castro JM, Burgisser A, Schipper CI, Mancini S (2012b) Mechanisms of bubble coalescence in silicic magmas. Bull Volcanol 74(10):2339–2352CrossRef
    Castro JM, Bindeman IN, Tuffen H, Schipper CI (2014) Explosive origin of silicic lava: textural and δD-H2O evidence for pyroclastic degassing during rhyolite effusion. Earth Planet Sci Lett 405:52–61CrossRef
    Cole JW (1970a) Structure and eruptive history of the tarawera volcanic complex. N Z J Geol Geophys 13(4):879–902CrossRef
    Cole JW (1970b) Petrography of the rhyolite lavas of Tarawera Volcanic Complex. N Z J Geol Geophys 13(4):903–924CrossRef
    Connor CB, Lichtner PC, Conway FM, Hill BE, Ovsyannikov AA, Federchenko I, Doubik Y, Shapar VN, Taran YA (1997) Cooling of an igneous dike 20 yr after intrusion. Geology 25(8):711–714CrossRef
    Cordonnier B, Caricchi L, Pistone M, Castro JM, Hess K-U, Gottschaller S, Manga M, Dingwell DB, Burlini L (2012) The viscous
    ittle transition of crystal-bearing silicic melts: direct observation of magma rupture and healing. Geology 40(7):611–614CrossRef
    Costantini L, Houghton BF, Bonadonna C (2010) Constraints on eruption dynamics of basaltic explosive activity derived from chemical and microtextural study: the example of the Fontana Lapilli Plinian eruption, Nicaragua. J Volcanol Geotherm Res 189(3):207–224CrossRef
    Dingwell DB, Webb SL (1989) Structural relaxation in silicate melts and non-Newtonian melt rheology in geologic processes. Phys Chem Miner 16(5):508–516CrossRef
    Dingwell DB, Webb SL (1990) Relaxation in silicate melts. Eur J Mineral 4:427–449
    Goepfert K, Gardner JE (2010) Influence of pre-eruptive storage conditions and volatile contents on explosive Plinian style eruptions of basic magma. Bull Volcanol 72(5):511–521CrossRef
    Heiken G, Wohletz K, Eichelberger J (1988) Fracture fillings and intrusive pyroclasts, Inyo domes, California. J Geophys Res Solid Earth 93(B5):4335–4350CrossRef
    Hess K-U, Dingwell DB (1996) Viscosities of leucogranitic melts: a non-Arrhenian model. Am Mineral 81:1297–1300
    Houghton BF, Gonnermann H (2008) Basaltic explosive volcanism: constraints from deposits and models. Chem Erde-Geochem 68(2):117–140CrossRef
    Houghton BF, Wilson CJN, Del Carlo P, Coltelli M, Sable JE, Carey RJ (2004) The influence of conduit processes on changes in style of basaltic Plinian eruptions: Tarawera 1886 and Etna 122 BC. J Volcanol Geotherm Res 137(1):1–14CrossRef
    Jaupart C (1998) Gas loss from magmas through conduit walls during eruption. In: Gilbert JS, Sparks RSJ (eds) The Physics of Explosive Volcanic Eruptions. Geological Society, London, Special Publications 145(1):73–90
    Jaupart C, Allègre CJ (1991) Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet Sci Lett 102(3):413–429CrossRef
    Kanaori Y, Kawakami S-I, Yairi K (1991) Microstructure of deformed biotite defining foliation in cataclasite zones in granite, central Japan. J Struct Geol 13(7):777–785CrossRef
    Kennedy BM, Spieler O, Scheu B, Kueppers U, Taddeucci J, Dingwell DB (2005) Conduit implosion during Vulcanian eruptions. Geology 33(7):581–584CrossRef
    Kennedy BM, Jellinek AM, Russell JK, Nichols ARL, Vigouroux N (2010) Time-and temperature-dependent conduit wall porosity: a key control on degassing and explosivity at Tarawera volcano, New Zealand. Earth Planet Sci Lett 299(1):126–137CrossRef
    Laumonier M, Arbaret L, Burgisser A, Champallier R (2011) Porosity redistribution enhanced by strain localization in crystal-rich magmas. Geology 39(8):715–718CrossRef
    Lavallée Y, Wadsworth FB, Vasseur J, Russell JK, Andrews GDM, Hess K-U, von Aulock FW, Kendrick JE, Tuffen H, Biggin AJ, Dingwell DB (2015) Eruption and emplacement timescales of ignimbrite super-eruptions from thermo-kinetics of glass shards. Frontiers in Earth Science 3(2)
    Llewellin EW, Manga M (2005) Bubble suspension rheology and implications for conduit flow. J Volcanol Geotherm Res 143(1):205–217CrossRef
    Manga M, Castro J, Cashman KV, Loewenberg M (1998) Rheology of bubble-bearing magmas. J Volcanol Geotherm Res 87(1):15–28CrossRef
    Manley CR, Fink JH (1987) Internal textures of rhyolite flows as revealed by research drilling. Geology 15(6):549–552CrossRef
    Marzano FS, Lamantea M, Montopoli M, Herzog M, Graf H, Cimini D (2013) Microwave remote sensing of the 2011 Plinian eruption of the Grímsvötn Icelandic volcano. Remote Sens Environ 129:168–184CrossRef
    Nairn IA, Cole JW (1981) Basalt dikes in the 1886 Tarawera Rift. N Z J Geol Geophys 24(5–6):585–592CrossRef
    Nairn IA, Shane PR, Cole JW, Leonard GJ, Self S, Pearson N (2004) Rhyolite magma processes of the ∼AD 1315 Kaharoa eruption episode, Tarawera volcano, New Zealand. J Volcanol Geotherm Res 131(3):265–294CrossRef
    Okumura S, Nakamura M, Tsuchiyama A, Nakano T, Uesugi K (2008) Evolution of bubble microstructure in sheared rhyolite: formation of a channel‐like bubble network. J Geophys Res Solid Earth 113, B07208CrossRef
    Proussevitch AA, Sahagian DL (1996) Dynamics of coupled diffusive and decompressive bubble growth in magmatic systems. J Geophys Res Solid Earth 101(B8):17447–17455CrossRef
    Richnow J (1999) Eruptional and Post-eruptional Processes in Rhyolite Domes. PhD Thesis (unpublished). University of Canterbury, Christchurch, New Zealand,
    Russell JK, Quane SL (2005) Rheology of welding: inversion of field constraints. J Volcanol Geotherm Res 142(1):173–191CrossRef
    Rust AC, Manga M (2002) Bubble shapes and orientations in low Re simple shear flow. J Colloid Interface Sci 249(2):476–480CrossRef
    Rust AC, Cashman KV, Wallace PJ (2004) Magma degassing buffered by vapor flow through brecciated conduit margins. Geology 32(4):349–352CrossRef
    Sable JE, Houghton BF, Wilson CJN, Carey RJ (2006) Complex proximal sedimentation from Plinian plumes: the example of Tarawera 1886. Bull Volcanol 69(1):89–103CrossRef
    Sable JE, Houghton BF, Wilson CJN, Carey RJ (2009) Eruption mechanisms during the climax of the Tarawera 1886 basaltic Plinian eruption inferred from microtextural characteristics of the deposits. In: Thordarson T, Self S, Larsen G, Rowland SK, Hoskuldsson A (eds) Studies in Volcanology: The Legacy of George Walker. Special Publications of IAVCEI 2:129–154
    Stasiuk MV, Barclay J, Carroll MR, Jaupart C, Ratté JC, Sparks RSJ, Tait SR (1996) Degassing during magma ascent in the Mule Creek vent (USA). Bull Volcanol 58(2–3):117–130CrossRef
    Thordarson T, Self S (2003) Atmospheric and environmental effects of the 1783–1784 Laki eruption: a review and reassessment. Journal of Geophysical Research: Atmospheres 108 (D1): AAC 7-1–-AAC 7–29
    Tuffen H, Dingwell DB, Pinkerton H (2003) Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31(12):1089–1092CrossRef
    Walker GPL, Self S, Wilson L (1984) Tarawera 1886, New Zealand—a basaltic plinian fissure eruption. J Volcanol Geotherm Res 21(1):61–78CrossRef
    Westrich HR, Eichelberger JC (1994) Gas transport and bubble collapse in rhyolitic magma: an experimental approach. Bull Volcanol 56(6–7):447–458CrossRef
    Wright HMN, Weinberg RF (2009) Strain localization in vesicular magma: implications for rheology and fragmentation. Geology 37(11):1023–1026CrossRef
  • 作者单位:Jenny Schauroth (1)
    Fabian B. Wadsworth (1)
    Ben Kennedy (2)
    Felix W. von Aulock (3)
    Yan Lavallée (3)
    David E. Damby (1)
    Jérémie Vasseur (1)
    Bettina Scheu (1)
    Donald B. Dingwell (1)

    1. Department of Earth and Environmental Science, Ludwig-Maximilians-Universität (LMU), Theresienstr. 41, 80333, Munich, Germany
    2. Department of Geology, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
    3. School of Earth, Ocean and Ecological Science, University of Liverpool, Brownlow Street, Liverpool, UK
  • 刊物主题:Geology; Geophysics/Geodesy; Mineralogy; Sedimentology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-0819
文摘
During explosive eruptions, a suspension of gas and pyroclasts rises rapidly within a conduit. Here, we have analysed textures preserved in the walls of a pyroclastic feeder dyke of the AD 1886 Tarawera basaltic Plinian fissure eruption. The samples examined consist of basaltic ash and scoria plastered onto a conduit wall of a coherent rhyolite dome and a welded rhyolitic dome breccia. We examine the textural evidence for the response of the wall material, built of ∼75 vol.% glass and ∼25 vol.% crystals (pore-free equivalent), to mass movement in the adjacent conduit. In the rhyolitic wall material, we quantify the orientation and aspect ratio of biotite crystals as strain markers of simple shear deformation, and interpret juxtaposed regions of vesiculation and vesicle collapse as evidence of conduit wall heating. Systematic changes occur close to the margin: (1) porosity is highly variable, with areas locally vesiculated or densified, (2) biotite crystals are oriented with their long axis parallel to the margin, (3) the biotites have greater aspect ratios close to the margin and (4) the biotite crystals are fractured. We interpret the biotite phenocryst deformation to result from crystal fracture, rotation and cleavage-parallel bookcase translation. These textural observations are inferred to indicate mechanical coupling between the hot gas-ash jet and the conduit wall and reheating of wall rock rhyolite. We couple these observations with a simple 1D conductive heating model to show what minimum temperature the conduit wall needs to reach in order to achieve a temperature above the glass transition throughout the texturally-defined deformed zone. We propose that conduit wall heating and resulting deformation influences conduit margin outgassing and may enhance the intensity of such large basaltic eruptions. Keywords Pyroclastic dyke Volcanic conduit Magma–rock interaction Strain localisation Wall rock heating

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700