The Important Role of Active Site Water in the Catalytic Mechanism of Human Carbonic Anhydrase II -A Semiempirical MO Approach to the Hydration of CO 2 -/sup>
详细信息    查看全文
文摘
The approach of CO2 to a series of active site model complexes of human carbonic anhydrase II (HCAII) and its catalytic hydration to bicarbonate anion have been investigated using semiempirical MO theory (AM1). The results show that direct nucleophilic attack of zinc-bound hydroxide to the substrate carbon occurs in each model system. Further rearrangement of the bicarbonate complex thus formed via a rotation-like movement of the bicarbonate ligand can only be found in active site model systems that include at least one additional water molecule. Further refinement of the model complex by adding a methanol molecule to mimic Thr-199 makes this process almost activationless. The formation of the final bicarbonate complex by an internal (intramolecular) proton transfer is only possible in the simplest of all model systems, namely {[Im3Zn(OH)]+·CO2}. The energy of activation for this process, however, is 36.8 kcal·mol–1 and thus too high for enzymatic catalysis. Therefore, we conclude that within the limitations of the model systems presented and the level of theory employed, the overall mechanism for the formation of the bicarbonate complex comprises an initial direct nucleophilic attack of zinc-bound hydroxide to carbon dioxide followed by a rotation-like rearrangement of the bicarbonate ligand via a penta-coordinate Zn2+ transition state structure, including the participation of an extra active site water molecule.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700