Integrating water exclusion theory into βcontacts to predict binding free energy changes and binding hot spots
详细信息    查看全文
  • 作者:Qian Liu (4) (4)
    Steven CH Hoi (4)
    Chee Keong Kwoh (4)
    Limsoon Wong (4)
    Jinyan Li (4)
  • 刊名:BMC Bioinformatics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:487 KB
  • 参考文献:1. Schreiber G, Fleishman SJ: Computational design of protein-protein interactions . / Curr Opin Struct Biol 2013,23(6):903-10. CrossRef
    2. Wells J: Systematic mutational analyses of protein-protein interfaces . / Methods Enzymol 1991, 202:390-11. CrossRef
    3. Bogan AA, Thorn KS: Anatomy of hot spots in protein interfaces . / J Mol Biol 1998, 280:1-. CrossRef
    4. Fischer TB, Arunachalam KV, Bailey D, Mangual V, Bakhru S, Russo R, Huang D, Paczkowski M, Lalchandani V, Ramachandra C, Ellison B, Galer S, Shapley J, Fuentes E, Tsai J: The binding interface database (BID): a compilation of amino acid hot spots in protein interfaces . / Bioinformatics 2003,19(11):1453-454. CrossRef
    5. Kumar MDS, Gromiha MM: PINT: protein-protein interactions thermodynamic database . / Nucleic Acids Res 2006,34(suppl 1):D195-D198. CrossRef
    6. Moal IH, Fernandez-Recio J: SKEMPI: a Structural Kinetic and Energetic database of Mutant Protein Interactions and its use in empirical models . / Bioinformatics 2012,28(20):2600-607. CrossRef
    7. Clackson T, Wells J: A hot spot of binding energy in a hormone-receptor interface . / Science 1995, 267:383-86. CrossRef
    8. Thorn KS, Bogan AA: ASEdb: a database of alanine mutations and their effects on the free energy of binding in protein interactions . / Bioinformatics 2001,17(3):284-85. CrossRef
    9. Guerois R, Nielsen JE, Serrano L: Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations . / J Mol Biol 2002,320(2):369-87. CrossRef
    10. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L: The FoldX web server: an online force field . / Nucl Acids Res 2005,33(Web Server issue):W382-W388. CrossRef
    11. Kortemme T, Baker D: A simple physical model for binding energy hot spots in protein-protein complexes . / Proc Natl Acad Sci USA 2002,99(22):14116-4121. CrossRef
    12. Kortemme T, Kim DE, Baker D: Computational alanine scanning of protein-protein interfaces . / Sci STKE 2004,2004(219):pl2.
    13. Benedix A, Becker CM, de Groot BL, Caflisch A, Bockmann RA: Predicting free energy changes using structural ensembles . / Nat Methods 2009, 6:3-. CrossRef
    14. Cho KI, Kim D, Lee D: A feature-based approach to modeling protein-protein interaction hot spots . / Nucl Acids Res 2009,37(8):2672-687. CrossRef
    15. Chen P, Li J, Wong L, Kuwahara H, Huang J, Gao X: Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences . / Proteins: Struct Funct Bioinformatics 2013,81(8):1351-362. CrossRef
    16. Ofran Y, Rost B: Protein-protein interaction hotspots carved into sequences . / PLoS Comput Biol 2007,3(7):e119. CrossRef
    17. Grosdidier S, Recio JF: Identification of hot-spot residues in protein-protein interactions by computational docking . / BMC Bioinformatics 2008, 9:447. CrossRef
    18. Zhu X, Ericksen SS, Demerdash ONA, Mitchell JC: Data-driven models for protein interaction and design . / Proteins: Struct Funct Bioinformatics 2013,81(12):2221-228. CrossRef
    19. Guney E, Tuncbag N, Keskin O, Gürsoy A: HotSprint: database of computational hot spots in protein interfaces . / Nucl Acids Res 2008,36(Database-Issue):662-66.
    20. Tuncbag N, Gursoy A, Keskin O: Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy . / Bioinformatics 2009,25(12):1513-520. CrossRef
    21. Assi SA, Tanaka T, Rabbitts TH, Fernandez-Fuentes N: PCRPi: Presaging Critical Residues in Protein interfaces, a new computational tool to chart hot spots in protein interfaces . / Nucl Acids Res 2010,38(6):e86. CrossRef
    22. Pallara C, Jimenez-Garcia B, Perez-Cano L, Romero-Durana M, Solernou A, Grosdidier S, Pons C, Moal IH, Fernandez-Recio J: Expanding the frontiers of protein-protein modeling: from docking and scoring to binding affinity predictions and other challenges . / Proteins: Struct Funct Bioinformatics 2013,81(12):2192-200. CrossRef
    23. Deng L, Guan J, Wei X, Yi Y, Zhou S: Boosting prediction performance of protein-protein interaction hot spots by using structural neighborhood properties . In / Research in Computational Molecular Biology, Volume 7821 of Lecture Notes in Computer Science. Edited by: Deng M, Jiang R, Sun F, Zhang X. Springer: Berlin, Heidelberg; 2013:333-44.
    24. Wang L, Liu ZP, Zhang XS, Chen L: Prediction of hot spots in protein interfaces using a random forest model with hybrid features . / Protein Eng Design Sel 2012,25(3):119-26. CrossRef
    25. Dehouck Y, Kwasigroch JM, Rooman M, Gilis D: BeAtMuSiC: prediction of changes in protein-protein binding affinity on mutations . / Nucleic Acids Res 2013,41(Web Server issue):W333-W339. CrossRef
    26. Moretti R, Fleishman SJ, Agius R, Torchala M, Bates PA, Kastritis PL, Rodrigues JPGLM, Trellet M, Bonvin AMJJ, Cui M, Rooman M, Gillis D, Dehouck Y, Moal I, Romero-Durana M, Perez-Cano L, Pallara C, Jimenez B, Fernandez-Recio J, Flores S, Pacella M, Praneeth Kilambi K, Gray JJ, Popov P, Grudinin S, Esquivel-Rodriguez J, Kihara D, Zhao N, Korkin D, Zhu X, / et al.: Community-wide evaluation of methods for predicting the effect of mutations on protein-protein interactions . / Proteins: Struct Funct Bioinformatics 2013,81(11):1980-987. CrossRef
    27. Kirkpatrick DG, Radke JD: A framework for computational morphology . / Computational Geometry, Machine Intelligence and Pattern Recognition 1985, 217-48.
    28. Liu Q, Kwoh CK, Hoi SCH: Beta atomic contacts: identifying critical specific contacts in protein binding interfaces . / PLoS ONE 2013,8(4):e59737. CrossRef
    29. Liu Q, Kwoh CK, Li J: Binding affinity prediction for protein-ligand complexes based on β contacts and B factor . / J Chem Inf Model 2013,53(11):3076-085. CrossRef
    30. Hubbard SJ, Thornton JM: ‘NACCESS- computer program . Tech. rep., Department of Biochemistry Molecular Biology, University College London, 1993
    31. Barber BC, Dobkin DP, Huhdanpaa H: The Quickhull algorithm for convex hulls . / ACM Trans Math Softw 1996,22(4):469-83. CrossRef
    32. Mintseris J, Weng Z: Atomic contact vectors in protein-protein recognition . / Proteins 2003,53(3):629-39. CrossRef
    33. Li J, Liu Q: ‘Double water exclusion- a hypothesis refining the O-ring theory for the hot spots at protein interfaces . / Bioinformatics 2009,25(6):743-50. CrossRef
    34. Martins JM, Ramos RM, Pimenta AC, Moreira IS: Solvent-accessible surface area: how well can be applied to hot-spot detection? / Proteins: Struct Funct Bioinformatics 2013,82(3):479-90. CrossRef
    35. Xia JF, Zhao XM, Song J, Huang DS: APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility . / BMC Bioinformatics 2010, 11:174. CrossRef
    36. Zhu X, Mitchell JC: KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density and plasticity features . / Proteins 2011,79(9):2671-683. CrossRef
  • 作者单位:Qian Liu (4) (4)
    Steven CH Hoi (4)
    Chee Keong Kwoh (4)
    Limsoon Wong (4)
    Jinyan Li (4)

    4. School of Computing, National University of Singapore, Singapore, 117417, Singapore
  • ISSN:1471-2105
文摘
Background Binding free energy and binding hot spots at protein-protein interfaces are two important research areas for understanding protein interactions. Computational methods have been developed previously for accurate prediction of binding free energy change upon mutation for interfacial residues. However, a large number of interrupted and unimportant atomic contacts are used in the training phase which caused accuracy loss. Results This work proposes a new method, β ACV ASA , to predict the change of binding free energy after alanine mutations. β ACV ASA integrates accessible surface area (ASA) and our newly defined β contacts together into an atomic contact vector (ACV). A β contact between two atoms is a direct contact without being interrupted by any other atom between them. A β contact’s potential contribution to protein binding is also supposed to be inversely proportional to its ASA to follow the water exclusion hypothesis of binding hot spots. Tested on a dataset of 396 alanine mutations, our method is found to be superior in classification performance to many other methods, including Robetta, FoldX, HotPOINT, an ACV method of β contacts without ASA integration, and ACV ASA methods (similar to β ACV ASA but based on distance-cutoff contacts). Based on our data analysis and results, we can draw conclusions that: (i) our method is powerful in the prediction of binding free energy change after alanine mutation; (ii) β contacts are better than distance-cutoff contacts for modeling the well-organized protein-binding interfaces; (iii) β contacts usually are only a small fraction number of the distance-based contacts; and (iv) water exclusion is a necessary condition for a residue to become a binding hot spot. Conclusions β ACV ASA is designed using the advantages of both β contacts and water exclusion. It is an excellent tool to predict binding free energy changes and binding hot spots after alanine mutation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700