Effect of surface-modified montmorillonite on viscosity and gelation behavior of cellulose/NaOH solution
详细信息    查看全文
  • 作者:Safoura Ahmadzadeh ; Ali Nasirpour ; Javad Keramat ; Stephane Desobry
  • 关键词:Cellulose ; Surface ; modified montmorillonite ; NaOH solution ; Rheological properties
  • 刊名:Cellulose
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:22
  • 期:3
  • 页码:1829-1839
  • 全文大小:1,313 KB
  • 参考文献:Ahmadzadeh S, Nasirpour A, Keramat J, Hamdami N, Behzad T, Desobry S (2014) Nanoporous cellulose nanocomposite foams as high insulated food packaging materials. Colloid Surf A. doi:10.-016/?j.?colsurfa.-014.-2.-37
    Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R 28:1-3View Article
    Bagheri M, Rabieh S (2013) Preparation and characterization of cellulose-ZnO nanocomposite based on ionic liquid ([C4mim]Cl). Cellulose 20:699-05View Article
    Blachot JF, Brunet N, Navard P, Cavaille JY (1998) Rheological behaviour of cellulose/(N-methylmorpholine N-oxide-water) solutions. Rheol Acta 37:107-14View Article
    Brown JM, Curliss D, Vaia RA (2000) Thermoset-layered silicate nanocomposites: quaternary ammonium montmorillonite with primary diamine cured epoxies. Chem Mater 12:3376-384View Article
    Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183-89View Article
    Cai J, Wang LX, Zhang L (2007) Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH urea aqueous solution. Cellulose 14:205-15View Article
    Cassagnau P, Barrès C (2010) Rheological behavior of rubber nanocomposites. In: Thomas S, Stephen R (eds) Rubber nanocomposites: preparations, properties and applications. Wiley, Chichester, pp 353-90
    Duman O, Tunc S, Cetinkaya A (2012) Electrokinetic and rheological properties of kaolinite in poly(diallyldimethylammonium chloride), poly(sodium 4-styrene sulfonate) and poly(vinyl alcohol) solutions. Colloids Surf A 394:23-2View Article
    Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473-524View Article
    Fischer S, Leipner H, Thummler K, Brendler B, Peters J (2003) Inorganic molten salts as solvents for cellulose. Cellulose 10:227-36View Article
    Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose–NaOH aqueous solutions. Biomacromolecules 9:269-77View Article
    He C, Wang Q (1999) Rheological properties of cellulose solution in paraformaldehyde/dimethyl sulfoxide system. Polym Adv Technol 10:487-92View Article
    Hirrien M, Chevillard C, Desbrieres J, Axelos MAV, Rinaudo M (1998) Thermogelation of methylcelluloses: new evidence for understanding the gelation mechanism. Polymer 39:6251-259View Article
    Kader MA, Lyu M, Nah C (2006) A study on melt processing and thermal properties of fluoroelastomer nanocomposites. Compos Sci Technol 66:1431-443View Article
    Kobayashi K, Huang C, Lodge TP (1999) Thermo-reversible gelation of aqueous methyl cellulose solutions. Macromolecules 32:7070-077View Article
    Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8:1728-734View Article
    Litchfield DW, Baird DG (2006) The rheology of high aspect ratio nanoparticle filled liquids. Rheol Rev 1-0
    Lu F, Cheng B, Song J, Liang Y (2012a) Rheological characterization of concentrated cellulose solutions in 1-allyl-3-methylimidazolium chloride. J Appl Polym Sci 124:3419-425View Article
    Lu Y, Wu J, Zhang J, Niu Y, Liu CY, He J, Zhang J (2012b) Rheological properties of cellulose/ionic liquid/dimethylsulfoxide (DMSO) solutions. Polymer 53:2524-531View Article
    Mihranyan A, Edsman K, Str?mme M (2007) Rheological properties of cellulose hydrogels prepared from Cladophora cellulose powder. Food Hydrocoll 21:267-72View Article
    Morris ER (1990) Shear-thinning of ‘random coil-polysaccharides: characterization by two parameters from a simple linear plot. Carbohydr Polym 13:85-6View Article
    Morris ER, Cutler AN, Ross-Murphy S, Rees DA (1981) Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydr Polym 1:5-1View Article
    Navard P, Haudin JM, Quenin I, Peguy A (1986) Shear rheology of diluted solutions of high molecular weight cellulose. J Appl Polym Sci 32:5829-839View Article
    Petrovan S, Collier JR, Negulescu II (2001) Rheology of cellulosic N-methylmorpholine oxide monohydrate solutions of different degrees of polymerization. J Appl Polym Sci 79:396-05View Article
    Pignon F, Magnin A, Piau JM (1998) Thixotropic behavior of clay dispersions: combinations of scattering and rheometric techniques. J Rheol 42:1349-373View Article
    Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose-NaOH solutions. Biomacromolecues 4:259-64View Article
    Schulz L, Seger B, Burchard W (2000) Structures of cellulose in solution. Macromol Chem Phys 201:2008-022View Article
    Sescousse R, Le KA, Ries ME, Budtova T (2010) Viscosity of cellulose-imidazolium-based ionic liquid solutions. J Phys Chem B 114:7222-228View Article
    Silva SMC, Pinto FV, Antunes FE, Migue
  • 作者单位:Safoura Ahmadzadeh (1)
    Ali Nasirpour (1)
    Javad Keramat (1)
    Stephane Desobry (2)

    1. Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
    2. Engineering Laboratory Biomolecules (LIBio), National Polytechnic Institute of Lorraine (INPL), ENSAIA, Nancy, France
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
In this work, rheological properties of cellulose solution incorporated with different concentration of surface-modified montmorillonite (SM-MMT) were investigated. Thermal behavior analyses of cellulose solutions were performed using rheological tests; including determination of various factors to estimate the gelation temperature and time. The results showed lower viscosities for composite samples compared to pristine cellulose solution which can be regarded as a result of good dispersion of SM-MMT through cellulose matrix. Moreover, gelation point was dependent on SM-MMT concentration. There was a tendency for an increase in gelation temperature with SM-MMT content from 0 to 10?wt%. Also, gelation time significantly increased with incorporation of nanoparticles, indicating SM-MMT effect on weakening of hydrogen bond strength between cellulose chains which limited cellulose aggregation. Fourier transform infrared and Raman spectroscopy were also used to evaluate structural differences between composite foams prepared from cellulose solutions. FTIR and Raman spectra confirmed hydrogen bond formation between cellulose matrix and SM-MMT.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700