GnRH receptor activation competes at a low level with growth signaling in stably transfected human breast cell lines
详细信息    查看全文
  • 作者:Kevin Morgan (1)
    Colette Meyer (2)
    Nicola Miller (1)
    Andrew H Sims (2)
    Ilgin Cagnan (2)
    Dana Faratian (2)
    David J Harrison (2)
    Robert P Millar (1)
    Simon P Langdon (2)
  • 刊名:BMC Cancer
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:11
  • 期:1
  • 全文大小:836KB
  • 参考文献:1. LHRH-agonists in Early Breast Cancer Overview group, Cuzick J, Ambroisine L, Davidson N, Jakesz R, Kaufmann M, Regan M, Sainsbury R: plus-plus">Use of luteinising-hormone-releasing hormone agonists as adjuvant treatment in premenopausal patients with hormone-receptor-positive breast cancer: a meta-analysis of individual patient data from randomised adjuvant trials. / Lancet 2007, plus-plus">369:1711鈥?173. p://dx.doi.org/10.1016/S0140-6736(07)60778-8">CrossRef
    2. Gnant M, Mlineritsch B, Schippinger W, Luschin-Ebengreuth G, P枚stlberger S, Menzel C, Jakesz R, Seifert M, Hubalek M, Bjelic-Radisic V, Samonigg H, Tausch C, Eidtmann H, Steger G, Kwasny W, Dubsky P, Fridrik M, Fitzal F, Stierer M, R眉cklinger E, Greil R, ABCSG-12 Trial Investigators, Marth C: plus-plus">Endocrine therapy plus zoledronic acid in premenopausal breast cancer. / New Engl J Med 2009, plus-plus">360:679鈥?91. p://dx.doi.org/10.1056/NEJMoa0806285">CrossRef
    3. Segal-Abramson T, Kitroser H, Levy J, Schally AV, Sharoni Y: plus-plus">Direct effects of luteinizing hormone-releasing hormone agonists and antagonists on MCF-7 mammary cancer cells. / Proc Natl Acad Sci USA 1992, plus-plus">89:2336鈥?339. p://dx.doi.org/10.1073/pnas.89.6.2336">CrossRef
    4. Hershkovitz E, Marbach M, Bosin E, Levy J, Roberts CT Jr, LeRoith D, Schally AV, Sharoni Y: plus-plus">Luteinizing hormone-releasing hormone antagonists interfere with autocrine and paracrine growth stimulation of MCF-7 mammary cancer cells by insulin-like growth factors. / J Clin Endocrinol Metab 1993, plus-plus">77:963鈥?68. p://dx.doi.org/10.1210/jc.77.4.963">CrossRef
    5. Buchholz S, Seitz S, Schally AV, Engel JB, Rick FG, Szalontay L, Hohla F, Krishan A, Papadia A, Gaiser T, Brockhoff G, Ortmann O, Diedrich K, K枚ster F: plus-plus">Triple-negative breast cancers express receptors for luteinizing hormone-releasing hormone (LHRH) and respond to LHRH antagonist cetrorelix with growth inhibition. / Int J Oncol 2009, plus-plus">35:789鈥?96.
    6. Everest HM, Hislop JN, Harding T, Uney JB, Flynn A, Millar RP, McArdle CA: plus-plus">Signaling and antiproliferative effects mediated by GnRH receptors after expression in breast cancer cells using recombinant adenovirus. / Endocrinology 2001, plus-plus">142:4663鈥?672. p://dx.doi.org/10.1210/en.142.11.4663">CrossRef
    7. Schubert A, Hawighorst T, Emons G, Gr眉ndker C: plus-plus">Agonists and antagonists of GnRH-I and -II reduce metastasis formation by triple-negative human breast cancer cells in vivo. / Breast Cancer Res Treat 2011, in press.
    8. Morgan K, Stewart AJ, Miller N, Mullen P, Muir M, Dodds M, Medda F, Harrison D, Langdon S, Millar RP: plus-plus">Gonadotropin-releasing hormone receptor levels and cell context affect tumor cell responses to agonist in vitro and in vivo. / Cancer Res 2008, plus-plus">68:6331鈥?340. p://dx.doi.org/10.1158/0008-5472.CAN-08-0197">CrossRef
    9. Morgan K, Stavrou E, Leighton SP, Miller N, Sellar R, Millar RP: plus-plus">Elevated GnRH receptor expression plus GnRH agonist treatment inhibits the growth of a subset of papillomavirus 18-immortalized human prostate cells. / Prostate 2010, plus-plus">71:915鈥?28. p://dx.doi.org/10.1002/pros.21308">CrossRef
    10. Rose A, Froment P, Perrot V, Quon MJ, LeRoith D, Dupont J: plus-plus">The luteinizing hormone-releasing hormone inhibits the anti-apoptotic activity of insulin-like growth factor-1 in pituitary alphaT3 cells by protein kinase Calpha-mediated negative regulation of Akt. / J Biol Chem 2004, plus-plus">279:52500鈥?2516. p://dx.doi.org/10.1074/jbc.M404571200">CrossRef
    11. Sims AH, Howell A, Howell SJ, Clarke RB: plus-plus">Origins of breast cancer subtypes and therapeutic implications. / Nat Clin Pract Oncol 2007, plus-plus">4:516鈥?25. p://dx.doi.org/10.1038/ncponc0908">CrossRef
    12. Weigelt B, Reis-Filho JS: plus-plus">Histological and molecular types of breast cancer: is there a unifying taxonomy? / Nat Rev Clin Oncol 2009, plus-plus">6:718鈥?30. p://dx.doi.org/10.1038/nrclinonc.2009.166">CrossRef
    13. Teschendorff AE, Caldas C: plus-plus">The breast cancer somatic 'muta-ome': tackling the complexity. / Breast Cancer Res 2009, plus-plus">11:301. p://dx.doi.org/10.1186/bcr2236">CrossRef
    14. Dati C, Muraca R, Tazartes O, Antoniotti S, Perroteau I, Giai M, Cortese P, Sismondi P, Saglio G, De Bortoli M: plus-plus">c-erbB-2 and ras expression levels in breast cancer are correlated and show a co-operative association with unfavorable clinical outcome. / Int J Cancer 1991, plus-plus">47:833鈥?38. p://dx.doi.org/10.1002/ijc.2910470607">CrossRef
    15. Kurebayashi J: plus-plus">Biological and clinical significance of HER2 overexpression in breast cancer. / Breast Cancer 2001, plus-plus">8:45鈥?1. p://dx.doi.org/10.1007/BF02967477">CrossRef
    16. Done SJ, Arneson NC, Oz莽elik H, Redston M, Andrulis IL: plus-plus">p53 mutations in mammary ductal carcinoma in situ but not in epithelial hyperplasias. / Cancer Res 1998, plus-plus">58:785鈥?89.
    17. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, Carey M, Hu Z, Guan Y, Sahin A, Symmans WF, Pusztai L, Nolden LK, Horlings H, Berns K, Hung MC, van de Vijver MJ, Valero V, Gray JW, Bernards R, Mills GB, Hennessy BT: plus-plus">An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. / Cancer Res 2008, plus-plus">68:6084鈥?091. p://dx.doi.org/10.1158/0008-5472.CAN-07-6854">CrossRef
    18. L贸pez-Knowles E, O'Toole SA, McNeil CM, Millar EK, Qiu MR, Crea P, Daly RJ, Musgrove EA, Sutherland RL: plus-plus">PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality. / Int J Cancer 2010, plus-plus">126:1121鈥?131.
    19. Troxell ML, Levine J, Beadling C, Warrick A, Dunlap J, Presnell A, Patterson J, Shukla A, Olson NR, Heinrich MC, Corless CL: plus-plus">High prevalence of PIK3CA/AKT pathway mutations in papillary neoplasms of the breast. / Mod Pathol 2010, plus-plus">23:27鈥?7. p://dx.doi.org/10.1038/modpathol.2009.142">CrossRef
    20. Yang J, Ren Y, Wang L, Li B, Chen Y, Zhao W, Xu W, Li T, Dai F: plus-plus">PTEN mutation spectrum in breast cancers and breast hyperplasia. / J Cancer Res Clin Oncol 2010, plus-plus">136:1303鈥?311. p://dx.doi.org/10.1007/s00432-010-0781-3">CrossRef
    21. Loi S, Sotiriou C, Haibe-Kains B, Lallemand F, Conus NM, Piccart MJ, Speed TP, McArthur GA: plus-plus">Gene expression profiling identifies activated growth factor signaling in poor prognosis (Luminal-B) estrogen receptor positive breast cancer. / BMC Med Genomics 2009, plus-plus">2:37. p://dx.doi.org/10.1186/1755-8794-2-37">CrossRef
    22. Cullen KJ, Allison A, Martire I, Ellis M, Singer C: plus-plus">Insulin-like growth factor expression in breast cancer epithelium and stroma. / Breast Cancer Res Treat 1992, plus-plus">22:21鈥?9. p://dx.doi.org/10.1007/BF01833330">CrossRef
    23. Br眉nner N, Moser C, Clarke R, Cullen K: plus-plus">IGF-I and IGF-II expression in human breast cancer xenografts: relationship to hormone independence. / Breast Cancer Res Treat 1992, plus-plus">22:39鈥?5. p://dx.doi.org/10.1007/BF01833332">CrossRef
    24. Zhang X, Yee D: plus-plus">Tyrosine kinase signalling in breast cancer: insulin-like growth factors and their receptors in breast cancer. / Breast Cancer Res 2000, plus-plus">2:170鈥?75. p://dx.doi.org/10.1186/bcr50">CrossRef
    25. Maor S, Yosepovich A, Papa MZ, Yarden RI, Mayer D, Friedman E, Werner H: plus-plus">Elevated insulin-like growth factor-I receptor (IGF-IR) levels in primary breast tumors associated with BRCA1 mutations. / Cancer Lett 2007, plus-plus">257:236鈥?43. p://dx.doi.org/10.1016/j.canlet.2007.07.019">CrossRef
    26. Law JH, Habibi G, Hu K, Masoudi H, Wang MY, Stratford AL, Park E, Gee JM, Finlay P, Jones HE, Nicholson RI, Carboni J, Gottardis M, Pollak M, Dunn SE: plus-plus">Phosphorylated insulin-like growth factor-I/insulin receptor is present in all breast cancer subtypes and is related to poor survival. / Cancer Res 2008, plus-plus">68:10238鈥?0246. p://dx.doi.org/10.1158/0008-5472.CAN-08-2755">CrossRef
    27. Sabbatini P, Rowand JL, Groy A, Korenchuk S, Liu Q, Atkins C, Dumble M, Yang J, Anderson K, Wilson BJ, Emmitte KA, Rabindran SK, Kumar R: plus-plus">Antitumor activity of GSK1904529A, a small-molecule inhibitor of the insulin-like growth factor-I receptor tyrosine kinase. / Clin Cancer Res 2009, plus-plus">15:3058鈥?067. p://dx.doi.org/10.1158/1078-0432.CCR-08-2530">CrossRef
    28. Chang SE: plus-plus">In vitro plus-plus">transformation of human epithelial cells. / Biochimica et Biophysica Acta 1986, plus-plus">823:161鈥?94.
    29. Aitken SJ, Thomas JS, Langdon SP, Harrison DJ, Faratian D: plus-plus">Quantitative analysis of changes in ER, PR and HER2 expression in primary breast cancer and paired nodal metastases. / Ann Oncol 2010, plus-plus">21:1254鈥?261. p://dx.doi.org/10.1093/annonc/mdp427">CrossRef
    30. Katz E, Dubois-Marshall S, Sims AH, Faratian D, Li J, Smith ES, Quinn JA, Edward M, Meehan RR, Evans EE, Langdon SP, Harrison DJ: plus-plus">A gene on the HER2 amplicon, C35, is an oncogene in breast cancer whose actions are prevented by inhibition of Syk. / Br J Cancer 2010, plus-plus">103:401鈥?0. p://dx.doi.org/10.1038/sj.bjc.6605763">CrossRef
    31. Cantalupo PG, S谩enz-Robles MT, Rathi AV, Beerman RW, Patterson WH, Whitehead RH, Pipas JM: plus-plus">Cell-type specific regulation of gene expression by simian virus 40 T antigens. / Virology 2009, plus-plus">386:183鈥?91. p://dx.doi.org/10.1016/j.virol.2008.12.038">CrossRef
    32. Wu A, Chen J, Baserga R: plus-plus">The role of insulin receptor substrate-1 in the oncogenicity of simian virus 40 T antigen. / Cell Cycle 2008, plus-plus">7:1999鈥?002. p://dx.doi.org/10.4161/cc.7.13.6096">CrossRef
    33. Hollestelle A, Elstrodt F, Nagel JH, Kallemeijn WW, Schutte M: plus-plus">Phosphatidylinositol-3-OH kinase or RAS pathway mutations in human breast cancer cell lines. / Mol Cancer Res 2007, plus-plus">5:195鈥?01. p://dx.doi.org/10.1158/1541-7786.MCR-06-0263">CrossRef
    34. Ahmad T, Farnie G, Bundred NJ, Anderson NG: plus-plus">The mitogenic action of insulin-like growth factor I in normal human mammary epithelial cells requires the epidermal growth factor receptor tyrosine kinase. / J Biol Chem 2004, plus-plus">279:1713鈥?719. p://dx.doi.org/10.1074/jbc.M306156200">CrossRef
    35. Surmacz E, Bartucci M: plus-plus">Role of estrogen receptor alpha in modulating IGF-I receptor signaling and function in breast cancer. / J Exp Clin Cancer Res 2004, plus-plus">23:385鈥?4.
    36. Kahlert S, Nuedling S, van Eickels M, Vetter H, Meyer R, Grohe C: plus-plus">Estrogen receptor alpha rapidly activates the IGF-1 receptor pathway. / J Biol Chem 2000, plus-plus">275:18447鈥?8453. p://dx.doi.org/10.1074/jbc.M910345199">CrossRef
    37. Kozma SC, Bogaard ME, Buser K, Saurer SM, Bos JL, Groner B, Hynes NE: plus-plus">The human c-Kirsten ras gene is activated by a novel mutation in codon 13 in the breast carcinoma cell line MDA-MB231. / Nucleic Acids Res 1987, plus-plus">15:5963鈥?971. p://dx.doi.org/10.1093/nar/15.15.5963">CrossRef
    38. Bartucci M, Morelli C, Mauro L, And貌 S, Surmacz E: plus-plus">Differential insulin-like growth factor I receptor signaling and function in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. / Cancer Res 2001, plus-plus">61:6747鈥?754.
    39. Browaeys-Poly E, Perdereau D, Lescuyer A, Burnol AF, Cailliau K: plus-plus">Akt interaction with PLC(gamma) regulates the G(2)/M transition triggered by FGF receptors from MDA-MB-231 breast cancer cells. / Anticancer Res 2009, plus-plus">29:4965鈥?969.
    40. Manavathi B, Acconcia F, Rayala SK, Kumar R: plus-plus">An inherent role of microtubule network in the action of nuclear receptor. / Proc Natl Acad Sci USA 2006, plus-plus">103:15981鈥?5986. p://dx.doi.org/10.1073/pnas.0607445103">CrossRef
    41. Callejas-Valera JL, Guinea-Viniegra J, Ram铆rez-Castillejo C, Recio JA, Galan-Moya E, Martinez N, Rojas JM, Ram贸n y Cajal S, S谩nchez-Prieto R: plus-plus">E1a gene expression blocks the ERK1/2 signaling pathway by promoting nuclear localization and MKP up-regulation: implication in v-H-Ras-induced senescence. / J Biol Chem 2008, plus-plus">283:13450鈥?3458. p://dx.doi.org/10.1074/jbc.M709230200">CrossRef
    42. Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H, Finkenzeller G, Marm茅 D, Rapp UR: plus-plus">Protein kinase C alpha activates RAF-1 by direct phosphorylation. / Nature 1993, plus-plus">364:249鈥?52. p://dx.doi.org/10.1038/364249a0">CrossRef
    43. Zimmermann S, Moelling K: plus-plus">Phosphorylation and regulation of Raf by Akt (protein kinase B). / Science 1999, plus-plus">286:1741鈥?744. p://dx.doi.org/10.1126/science.286.5445.1741">CrossRef
    44. Moelling K, Schad K, Bosse M, Zimmermann S, Schweneker M: plus-plus">Regulation of Raf-Akt Cross-talk. / J Biol Chem 2002, plus-plus">277:31099鈥?1106. p://dx.doi.org/10.1074/jbc.M111974200">CrossRef
    45. Lobenhofer EK, Huper G, Iglehart JD, Marks JR: plus-plus">Inhibition of mitogen-activated protein kinase and phosphatidylinositol 3-kinase activity in MCF-7 cells prevents estrogen-induced mitogenesis. / Cell Growth Differ 2000, plus-plus">11:99鈥?10.
    46. Fukazawa H, Noguchi K, Murakami Y, Uehara Y: plus-plus">Mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitors restore anoikis sensitivity in human breast cancer cell lines with a constitutively activated extracellular-regulated kinase (ERK) pathway. / Mol Cancer Ther 2002, plus-plus">1:303鈥?09.
    47. The pre-publication history for this paper can be accessed here:p://www.biomedcentral.com/1471-2407/11/476/prepub" class="a-plus-plus">http://www.biomedcentral.com/1471-2407/11/476/prepub
  • 作者单位:Kevin Morgan (1)
    Colette Meyer (2)
    Nicola Miller (1)
    Andrew H Sims (2)
    Ilgin Cagnan (2)
    Dana Faratian (2)
    David J Harrison (2)
    Robert P Millar (1)
    Simon P Langdon (2)

    1. Medical Research Council Human Reproductive Sciences Unit, The Queen鈥檚 Medical Research Institute, Little France Crescent, Old Dalkeith Road, Edinburgh, EH16 4TJ, UK
    2. Breakthrough Research Unit and Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
  • ISSN:1471-2407
文摘
Background Gonadotrophin releasing hormone (GnRH) analogs lower estrogen levels in pre-menopausal breast cancer patients. GnRH receptor (GnRH-R) activation also directly inhibits the growth of certain cells. The applicability of GnRH anti-proliferation to breast cancer was therefore analyzed. Methods GnRH-R expression in 298 primary breast cancer samples was measured by quantitative immunofluorescence. Levels of functional GnRH-R in breast-derived cell lines were assessed using 125I-ligand binding and stimulation of 3H-inositol phosphate production. Elevated levels of GnRH-R were stably expressed in cells by transfection. Effects of receptor activation on in vitro cell growth were investigated in comparison with IGF-I and EGF receptor inhibition, and correlated with intracellular signaling using western blotting. Results GnRH-R immunoscoring was highest in hormone receptor (triple) negative and grade 3 breast tumors. However prior to transfection, functional endogenous GnRH-R were undetectable in four commonly studied breast cancer cell lines (MCF-7, ZR-75-1, T47D and MDA-MB-231). After transfection with GnRH-R, high levels of cell surface GnRH-R were detected in SVCT and MDA-MB-231 clones while low-moderate levels of GnRH-R occurred in MCF-7 clones and ZR-75-1 clones. MCF-7 sub-clones with high levels of GnRH-R were isolated following hygromycin phosphotransferase transfection. High level cell surface GnRH-R enabled induction of high levels of 3H-inositol phosphate and modest growth-inhibition in SVCT cells. In contrast, growth of MCF-7, ZR-75-1 or MDA-MB-231 clones was unaffected by GnRH-R activation. Cell growth was inhibited by IGF-I or EGF receptor inhibitors. IGF-I receptor inhibitor lowered levels of p-ERK1/2 in MCF-7 clones. Washout of IGF-I receptor inhibitor resulted in transient hyper-elevation of p-ERK1/2, but co-addition of GnRH-R agonist did not alter the dynamics of ERK1/2 re-phosphorylation. Conclusions Breast cancers exhibit a range of GnRH-R immunostaining, with higher levels of expression found in triple-negative and grade 3 cancers. However, functional cell surface receptors are rare in cultured cells. Intense GnRH-R signaling in transfected breast cancer cells did not markedly inhibit growth, in contrast to transfected HEK 293 cells indicating the importance of intracellular context. GnRH-R signaling could not counteract IGF-I receptor-tyrosine kinase addiction in MCF-7 cells. These results suggest that combinatorial strategies with growth factor inhibitors will be needed to enhance GnRH anti-proliferative effects in breast cancer

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700