Compost Addition Effects upon Sweet Sorghum Biomass Productivity and Sugar Content
详细信息    查看全文
  • 作者:Rolando Cifuentes ; Roberto de León ; Ana Luisa Mendizábal de Montenegro…
  • 关键词:Sweet sorghum ; Fertilization ; Compost ; Biomass productivity ; Sugar production
  • 刊名:Sugar Tech
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:18
  • 期:2
  • 页码:168-175
  • 全文大小:855 KB
  • 参考文献:Abbasi, M.K., N. Afsar, and N. Rahim. 2013. Effect of wood ash and compost application on nitrogen transformations and availability in soil-plant systems. Soil Science Society of America Journal 77: 558–567.CrossRef
    Almodares, A., R. Taheri, M. Chung, and M. Fathi. 2008. The effect of nitrogen and potassium fertilizers on growth parameters and carbohydrate contents of sweet sorghum cultivars. Journal of Enviromental Biology 29: 849–852.
    Amaducci, S., A. Monti, and G. Venturi. 2004. Non-structural carbohydrates and fiber components in sweet sorghum as affected by low and normal input techniques. Industrial Crops and Products 20: 111–118.CrossRef
    Amlinger, F., B. Götz, P. Dreher, J. Geszti, and C. Weissteiner. 2003. Nitrogen in biowaste and yard waste compost: Dynamics of mobilisation and availability-a review. European Journal of Soil Biology 39: 107–116.CrossRef
    Atalay, A., F.D. Favi. 2013. Salt tolerance of mycorrhiza sweet sorghum. Water, Food, Energy and Innovation for a Sustainable World, American Society of Agronomy-Crop Science Society of America-Soil Science Society of America, Poster 901, Tampa, Florida.
    Averill, C., B.L. Turner, and A.C. Finzi. 2014. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505: 543–545.CrossRef PubMed
    Bonanomi, G., V. Antignani, M. Capodilupo, and F. Scala. 2010. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biology and Biochemistry 42: 136–144.CrossRef
    Bradford, M.A. 2014. Good dirt with good friends. Nature 505: 486–487.CrossRef PubMed
    Cifuentes, R., R. de León, C. Porres, and C. Rolz. 2013. Windrow composting of waste sugar cane and press mud mixtures. Sugar Tech 15: 406–411.CrossRef
    Cifuentes, R., R. Bressani, and C. Rolz. 2014. The potential of sweet sorghum as a source of ethanol and protein. Energy and Sustainable Development 21: 13–19.CrossRef
    Diacono, M., and F. Montemurro. 2010. Long-term effects of organic amendments on soil fertility. A review. Agronomy and Sustainable Development 30: 401–422.CrossRef
    Erickson, J.E., Z.R. Helsel, K.R. Woodward, J.M.B. Vendramini, Y. Wang, L.E. Sollenberg, and R.A. Gilbert. 2011. Planting date affects biomass and brix of sweet sorghum grown for biofuel across Florida. Agronomy Journal 103: 1827–1833.CrossRef
    Erickson, J.E., K.R. Woodard, and L.E. Sollenberger. 2012. Optimizing sweet sorghum production for biofuel in the Southeastern USA through nitrogen fertilization and top removal. Bioenergy Research 5: 86–94.CrossRef
    Favoino, E., and D. Hogg. 2008. The potential role of compost in reducing greenhouse gases. Waste Managament and Research 26: 61–69.CrossRef
    Gale, L., J.R. Condon, M.K. Conyers, A.F. Sotuhwell, V.T. Guong. 2014. Agronomic benefits of combining inorganic phosphorus fertilizers with organic soil amendments. Acta Horticulturae 1018, ISHS, 307-314.
    Geisseler, D., and K.M. Scow. 2014. Long-term effects of mineral fertilizers on soil microorganisms-A review. Soil Biology & Biochemistry 75: 54–63.CrossRef
    Gill, J.R., P.S. Burks, S.A. Staggenborg, G.N. Odvody, R.W. Heiniger, B. Macoon, K.J. Moore, M. Barret, and W.L. Rooney. 2014. Yield results and stability analysis from the Southern Regional Biomass Trial. Bioenergy Research 7: 1026–1034.CrossRef
    Goff, B.M., K.J. Moore, S.L. Fales, and E.A. Heaton. 2010. Double-cropping sorghum for biomass. Agronomy Journal 102: 1586–1592.CrossRef
    Han, L.P., Y. Steinberger, Y.L. Zhao, and G.H. Xie. 2011. Accumulation and partitioning of nitrogen, phosphorus and postassium in different varieties of sweet sorghum. Field Crops Research 120: 230–240.CrossRef
    Houx, J.H., and F.B. Fritschi. 2013. Influence of midsummer planting dates on ethanol production potential of sweet sorghum. Agronomy Journal 105: 1761–1768.CrossRef
    Kawahigashi, H., S. Kasuga, H. Okuizumi, S. Hiradate, and J. Yonemaru. 2013. Evaluation of brix and sugar content in stem juice from sorghum varieties. Grassland Science 59: 11–19.CrossRef
    Kouvelas, A.V., G. Aggelis, A.A. Alexopoulos, and K.C. Angelopoulos. 2014. Nitrogen dynamics during growth of sweet sorghum in response to conventional and organic soil fertility management. Australñian Journal of Crop Science 8: 730–737.
    Lingle, S.E., T.L. Tew, H. Rukavina, and D.L. Boykin. 2012. Post-harvest changes in sweet sorghum I: Brix and sugars. Bioenergy Research 5: 158–167.CrossRef
    Martínez-Blanco, J., C. Lazcano, T.H. Christensen, P. Muñoz, J. Rieradevall, J. Moller, A. Antón, and A. Boldrin. 2013. Compost benefits for agriculture evaluated by life cycle assessment. A review. Agronomy and Sustainable Development 33: 721–732.CrossRef
    Miller, A.N., and M.J. Ottman. 2010. Irrigation frequency effects on growth and ethanol yield in sweet sorghum. Agronomy Journal 102: 60–70.CrossRef
    Munirathnam, P., K. Ashok Kumar, and P. Srinivasa Rao. 2013. Performance of sweet sorghum varieties and hybrids during post rainy season in vertisols of scarce rainfall zone in Andhra Pradesh. Sugar Tech 15: 271–277.CrossRef
    Nuessley, G.S., Y. Wang, H. Sandhu, N. Larsen, and R.H. Cherry. 2013. Entomologic and agronomic evaluations of 18 sweet sorghum cultivars for biofuel in Florida. Florida Entomology 96: 512–528.CrossRef
    Qazi, H.A., S. Paranjpe, and S. Bhargava. 2012. Stem sugar accumulation in sweet sorghum—Activity and expression of sucrose metabolizing enzymes and sucrose transporters. Journal of Plant Physiology 169: 605–613.CrossRef PubMed
    Rajendran, C., K. Ramamoorthy, and S. Backiyarani. 2000. Effect of deheading on juice quality characteristics and sugar yield of sweet sorghum. Journal of Agronomy and Crop Science 185: 23–26.CrossRef
    Rao, S.S., J.V. Patil, P.V.V. Prasad, D.C.S. Reddy, J.S. Mishra, A.V. Umakanth, B.V.S. Reddy, and A.A. Kumar. 2013a. Sweet sorghum planting effects on stalk yield and sugar quality in semi-arid tropical environment. Agronomy Journal 105: 1458–1465.CrossRef
    Rao, S.S., J.V. Patil, A.V. Umakanth, J.S. Mishra, C.V. Ratnavathi, G. Shyam Prasad, and B.D. Rao. 2013b. Comparative performance of sweet sorghum hybrids and open pollinated varieties for millable stalk yield, biomass, sugar quality traits, grain yield and bioethanol production in tropical Indian conditions. Sugar Tech 15: 250–257.CrossRef
    Rolz, C., R. de León, A.L. Mendizábal de Montenegro, and R. Cifuentes. 2014. Ethanol from sweet sorghum in a year-round production cycle. Biomass Conversion and Biorefinery 4: 341–350.CrossRef
    Rooney, W.L., J. Blumenthal, B. Bean, and J.E. Mullet. 2007. Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioproducts and Biorefinery 1: 147–157.CrossRef
    Russo, W.M., and W.W. Fish. 2012. Biomass, extracted liquid yields, sugar content or seed yields of biofuel feedstoacks as affected by fertilizer. Industrial Crops and Products 36: 555–559.CrossRef
    Rutto, L.K., Y. Xu, M. Brandt, S. Ren, and M.K. Kering. 2013. Juice, ethanol, and grain yield potential of five sweet sorghum cultivars. Jounal of Sustainable Bioenergy Systems 3: 113–118.CrossRef
    Sakellariou-Makrantonaki, M., and D.S. Dimakas. 2013. Effects of biosolids application on sweet sorghum biomass, water use efficiency an ethanol production. Fresenius Environmental Bulletin 22: 914–921.
    Sawargaonkar, G.L., M.D. Patil, S.R. Wani, E. Pavani, B.V.S.R. Reddy, and S. Marimuthu. 2013. Nitrogen response and water use efficiency of sweet sorghum cultivars. Field Crops Research 149: 245–251.CrossRef
    Serrão, M.G., M.R. Menino, J.C. Martins, N. Castanheir, M.E. Lourenco, I. Januario, M.L. Fernandes, and M.C. Goncalves. 2012. Mineral leaf composition of sweet sorghum in relation to biomass and sugar yields under different nitrogen and salinity conditions. Communications in Soil Science and Plant Analalysis 43: 2376–2388.CrossRef
    Sikora, L.J., and R.A.K. Szmidt. 2001. Nitrogen sources, mineralization rates, and nitrogen nutrition benefits to plants from composts. In Compost utilization in horticultural cropping systems, ed. P.J. Stoffella, and B.A. Kahn, 287–320. Boca Raton: Lewis Publishers.
    Sipos, B., J. Reczey, Z. Somorai, Z. Kadar, D. Dienes, and K. Reczey. 2009. Sweet sorghum as feedstock for ethanol production: Enzymatic hydrolysis of steam-pretreated bagasse. Applied Biochemistry and Biotechnology 153: 151–162.CrossRef PubMed
    Teetor, V.H., D.V. Duclos, E.T. Wittenberg, K.M. Young, J. Chawhuaymak, M.R. Riley, and D.T. Ray. 2011. Effects of planting date on sugar and ethanol yield of sweet sorghum grown in Arizona. Industrial Crops and Products 34: 1293–1300.CrossRef
    Termorshuizen, A.J., S.W. Moolenaar, A.H.M. Veeken, and W.J. Blok. 2004. The value of compost. Review of Environmental Science and Bio/Technology 3: 343–347.CrossRef
    Tew, T.L., R.M. Cobill, and E.P. Richard. 2008. Evaluation of sweet sorghum and sorghum x sudan grass hybrids as feedstock for ethanol production. Bioenergy Research 1: 147–152.CrossRef
    Tsuchihashi, N., and Y. Goto. 2004. Cultivation of sweet sorghum and determination of its harvest time to make us as the raw material for fermentation, practice during rainy season of dry land of Indonesia. Plant Production Science 7: 442–448.CrossRef
    Vasilakoglou, I., K. Dhima, N. Karagiannidis, and T. Gatsis. 2011. Sweet sorghum productivity for biofuel increased soil salinity and reduced irrigation. Field Crops Research 120: 38–46.CrossRef
    Wortmann, C.S., A.J. Liska, R.B. Ferguson, D.J. Lyon, R.N. Klein, and I. Dweikat. 2010. Dryland performance of sweet sorghum and grain crops for biofuel in Nebraska. Agronomy Journal 102: 319–326.CrossRef
    Yang, L., B. Dun, X. Zhao, M. Yue, M. Lu, and G. Li. 2013. Correlation analysis between key enzymes activities and sugar content in sweet sorghum stems at physiological maturity stage. Australian Journal of Crop Science 7: 84–92.
  • 作者单位:Rolando Cifuentes (1)
    Roberto de León (2)
    Ana Luisa Mendizábal de Montenegro (2)
    Carlos Rolz (2)

    1. Agriculture and Food Studies Center, Research Institute, Universidad del Valle de Guatemala, Guatemala City, Guatemala
    2. Biochemical Engineering Center, Research Institute, Universidad del Valle de Guatemala, Guatemala City, Guatemala
  • 刊物主题:Agriculture;
  • 出版者:Springer India
  • ISSN:0974-0740
文摘
Nitrogen availability generally limits plant growth. In order to reduce consumption of chemical fertilizers in agriculture organic amendments are usually incorporated. Among them compost usage is common. The experimental results presented and discussed below were done in order to find out the effects of compost additions on sweet sorghum biomass productivity and stalk sugar content, employing a partial substitution strategy of inorganic nitrogen by organic nitrogen from compost up to total substitution and at three levels of total nitrogen. We found an increasing positive trend between stalk biomass productivity and compost additions for all nitrogen levels tested. Maximum stalk productivity of 56 and 57 Mg/ha on wet basis were obtained with 100 % compost at 100 and 150 kgN/ha levels respectively. A minimum value of 32 Mg/ha on wet basis was obtained by the first cut sample at 50 kgN/ha employing only inorganic fertilization. The ratoon data was higher than those of the first cut for all cases. A significant linear model was adjusted to the first cut data between pressed juice total sugars and the ratio between reducing sugars and sucrose, which indicated a negative correlation among the variables. The data distribution suggested that compost fertilization induced a low ratio and higher sugar content in the stalk.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700