The Effect of a Covalent and a Noncovalent Small-Molecule Inhibitor on the Structure of Abg β-Glucosidase in the Gas-Phase
详细信息    查看全文
  • 作者:Khadijeh Rajabi (1)
    D. J. Douglas (1)
  • 关键词:Abg ; β ; Glucosidase ; (Non) ; Covalent protein complex ; Tandem mass spectrometry ; Cross section ; Intact protein ESI ; MS ; Symmetric charge partitioning ; Protein–protein interactions ; Triple ; quadrupole MS ; LIT ; TOF MS
  • 刊名:Journal of The American Society for Mass Spectrometry
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:24
  • 期:6
  • 页码:907-916
  • 全文大小:510KB
  • 参考文献:1. Kitova, E., Bundle, D.R., Klassen, J.S.: Thermal dissociation of protein-oligosaccharide complexes in the gas phase: mapping the intrinsic intermolecular interactions. / J. Am. Chem. Soc. 124, 5902-913 (2002) CrossRef
    2. Hunter, C.L., Mauk, A.G., Douglas, D.J.: Dissociation of heme from myoglobin and cytochrome / b / 5 : comparison of behavior in solution and the gas phase. / Biochemistry 36, 1018-025 (1997) CrossRef
    3. Potier, N., Barth, P., Tritsch, D., Biellmann, J.-F., Van Dorsselaer, A.: Study of noncovalent enzyme-inhibitor complexes of aldose reductase by electrospray mass spectrometry. / Eur. J. Biochem. 24, 274-82 (1997) CrossRef
    4. Gao, J., Wu, Q., Carbeck, J., Lei, Q.P., Smith, R.D., Whitesides, G.M.: Probing the energetics of dissociation of carbonic anhydrase-ligand complexes in the gas phase. / Biophys. J. 76, 3253-260 (1999) CrossRef
    5. Rostom, A., Tame, J.R.H., Ladbury, J.E., Robinson, C.V.: Specificity and interactions of the protein OppA: partitioning solvent binding effects using mass spectrometry. / J. Mol. Biol. 296, 269-79 (2000) CrossRef
    6. Kitova, E.N., Wang, W., Bundle, D.R., Klassen, J.S.: Retention of bioactive ligand conformation in a gaseous protein trisaccharide complex. / J. Am. Chem. Soc. 124, 13980-3981 (2002) CrossRef
    7. Kitova, E.N., Bundle, D.R., Klassen, J.S.: Evidence for the preservation of specific intermolecular interactions in gaseous protein-oligosaccharide complexes. / J. Am. Chem. Soc. 124, 9340-341 (2002) CrossRef
    8. Liu, L., Michelsen, K., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Energetics of lipid binding in a hydrophobic protein cavity. / J. Am. Chem. Soc. 134, 3054-060 (2012) CrossRef
    9. Loo, J.A.: Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes. / Int. J. Mass Spectrom. 200, 175-86 (2000) CrossRef
    10. Ferguson, P.L., Kuprowski, M.C., Boys, B.L., Wilson, D.J., Pan, J., Konermann, L.: Protein folding and protein-ligand interactions monitored by electrospray mass spectrometry. / Curr. Anal. Chem. 5, 186-04 (2009) CrossRef
    11. Heck, A.J.R., van den Heuvel, R.H.H.: Investigation of intact protein complexes by mass spectrometry. / Mass Spectrom. Rev. 23, 368-89 (2004) CrossRef
    12. Pacholarz, K.J., Garlish, R.A., Taylor, R.J., Barran, P.E.: Mass spectrometry based tools to investigate protein–ligand interactions for drug discovery. / Chem. Soc. Rev. 41, 4335-355 (2012) CrossRef
    13. Te?i?, M., Wicki, J., Poon, D.K.Y., Withers, S.G., Douglas, D.J.: Gas phase noncovalent protein complexes that retain solution binding properties: binding of xylobiose inhibitors to the β-1,4 exoglucanase from / Cellulomonas fimi. / J. Am. Soc. Mass Spectrom. 18, 64-3 (2007) CrossRef
    14. Henrissat, B.A.: Classification of glycosyl hydrolases based on amino acid sequence similarities. / Biochem. J. 280, 309-16 (1991)
    15. Henrissat, B., Bairoch, A.: New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. / Biochem. J. 293, 781-88 (1993)
    16. Day, A.G., Withers, S.G.: The purification and characterization of a β-glucosidase from / Alcaligenes faecalis. / Biochem. Cell Biol. 64, 914-22 (1986) CrossRef
    17. Wakarchuk, W., Kilburn, D., Miller, R., Warren, R.: The molecular cloning and expression of a cellobiase gene from an / Agrobacterium in / Escherichia Coli. / Mol. Gen. Genet. 205, 146-52 (1986) CrossRef
    18. Withers, S.G., Warren, R.A.J., Street, I.P., Rupitz, K., Kempton, J.B., Aebersold, R.: Unequivocal demonstration of the involvement of a glutamate residue as a nucleophile in the mechanism of a “retaining-glycosidase. / J. Am. Chem. Soc. 112, 5887-889 (1990) CrossRef
    19. Tull, D., Miao, S., Withers, S.G., Aebersold, R.: Identification of derivatized peptides without radiolabels: tandem mass spectrometric localization of the tagged active-site nucleophiles of two cellulases and a β-glucosidase. / Anal. Biochem. 224, 509-14 (1995) CrossRef
    20. Kempton, J.B., Withers, S.G.: Mechanism of / Agrobacterium β-glucosidase: kinetic studies. / Biochem. 31, 9961-969 (1992) CrossRef
    21. Street, I.P., Armstrong, C.R., Withers, S.G.: Hydrogen bonding and specificity. Fluorodeoxy sugars as probes of hydrogen bonding in the glycogen phosphorylase–glucose complex. / Biochemistry 25, 6021-027 (1986) CrossRef
    22. Shaikh, F.A., Withers, S.G.: Teaching old enzymes new tricks: engineering and evolution of glycosidases and glycosyl transferases for improved glycoside synthesis. / Biochem. Cell Biol. 86, 169-77 (2008) CrossRef
    23. Koshland, D.E.: Stereochemistry and the mechanism of enzymatic reactions. / Biol. Rev. 28, 416-36 (1953) CrossRef
    24. Mackenzie, L.F., Wang, Q., Warren, R.A.J., Withers, S.G.: Glycosynthases: mutant glycosidases for oligosaccharide synthesis. / J. Am. Chem. Soc. 120, 5583-584 (1998) CrossRef
    25. Street, I.P., Kempton, J.B., Withers, S.G.: Inactivation of a β-glucosidase through the accumulation of a stable 2-deoxy-2-fluoro-β-d -glucopyranosyl-enzyme intermediate: a detailed investigation. / Biochemistry 31, 9970-978 (1992) CrossRef
    26. Wang, Q., Trimbur, D., Graham, R.W., Warren, R.A.J., Withers, S.G.: Identification of the acid/base catalyst in / Agrobacterium faecalis β-glucosidase by kinetic analysis of mutants. / Biochemistry 34, 14554-4562 (1995) CrossRef
    27. Namchuk, M.N., Withers, S.G.: Mechanism of / Agrobacterium β-glucosidase: kinetic analysis of the role of noncovalent enzyme/substrate interactions. / Biochemistry 34, 16194-6202 (1995) CrossRef
    28. Rempel, B.P., Withers, S.G.: Covalent inhibitors of glycosidases and their applications in biochemistry and biology. / Glycobiology 18, 570-86 (2008) CrossRef
    29. Compain, P., Martin, O.R. (eds.): Iminosugars: From Synthesis to Therapeutic Applications. Wiley-VCH, Weinheim (2008)
    30. Martin, O.R., Compain, P.: Design, synthesis and biological evaluation of iminosugar-based glycosyltransferase inhibitors. / Curr. Top. Med. Chem. 3, 541-60 (2003) CrossRef
    31. Asano, N., Nash, R.J., Molyneux, R.J., Fleet, G.W.J.: Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. / Tetrahedron-Asymmetry 11, 1645-680 (2000) CrossRef
    32. Wrodnigg, T.M.: From Lianas to Glycobiology Tools: Twenty-five Years of 2,5-Dideoxy-2,5-imino-D-mannitol. In: Schmid, W., Stütz, A.E. (eds.) Timely Research Perspectives in Carbohydrate Chemistry, pp. 393-26. Springer, Vienna (1999)
    33. Heightman, T.D., Vasella, A.T.: Recent insights into inhibition, structure, and mechanism of configuration-retaining glycosidases. / Angew. Chem. Int. Ed. 38, 750-70 (1999) CrossRef
    34. Stütz, A.E. (ed.): Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond. Wiley-VCH, Weinheim (1999)
    35. Bols, M.: 1-Aza sugars, apparent transition state analogues of equatorial glycoside formation/cleavage. / Acc. Chem. Res. 31, 1- (1998) CrossRef
    36. Legler, G.: Glycoside hydrolases: mechanistic information from studies with reversible and irreversible inhibitors. / Adv. Carbohydr. Chem. Biochem. 48, 319-84 (1990) CrossRef
    37. Spiro, R.G.: Processing Enzymes Involved in the Deglucosylation of / N-Linked Oligosaccharides of Glycoproteins: Glucosidases I and II and Endomannosidase. In: Ernst, B., Hart, G.W., Sinay, P. (eds.) Carbohydrates in Chemistry and Biology, vol. 3, pp. 65-9. Wiley-VCH, Weinheim (2000) CrossRef
    38. Elbein, A.D., Molyneux, R.J.: Inhibitors of Glycoprotein Processing. In: Stütz, A.E. (ed.) Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond, pp. 216-51. Wiley-VCH, Weinheim (1999)
    39. Sels, J.P., Huijberts, M.S., Wolffenbuttel, B.H.: Miglitol, a new α-glucosidase inhibitor. / Expert. Opin. Pharmacother. 1, 149-56 (1999) CrossRef
    40. Simmonds, M.S.J., Kite, G.C., Porter, E.A.: Taxonomic Distribution of Iminosugars in Plants and Their Biological Activities. In: Stütz, A.E. (ed.) Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond, pp. 8-0. Wiley-VCH, Weinheim (1999)
    41. Pototschnig, G., De Csáky, C.M., Burke, J.R.M., Schitter, G., Stütz, A.E., Tarling, C.A., Withers, S.G., Wrodnigg, T.M.: Synthesis and biological evaluation of novel biotin–iminoalditol conjugates. / Bioorg. Med. Chem. Lett. 20, 4077-079 (2010) CrossRef
    42. Campbell, J.M., Collings, B.A., Douglas, D.J.: A new linear ion trap time-of-flight system with tandem mass spectrometry capabilities. / Rapid Comm. Mass Spectrom. 12, 1463-474 (1998) CrossRef
    43. Collings, B.A., Campbell, J.M., Mao, D.M., Douglas, D.J.: A combined linear ion trap time-of-flight system with improved performance and MSn capabilities. / Rapid Comm. Mass Spectrom. 15, 1777-795 (2001) CrossRef
    44. Chernushevich, I.V., Thomson, B.A.: Collisional cooling of large ions in electrospray mass spectrometry. / Anal. Chem. 76, 1754-760 (2004) CrossRef
    45. Covey, T., Douglas, D.J.: Collision cross sections for protein ions. / J. Am. Soc. Mass Spectrom. 4, 616-23 (1993) CrossRef
    46. Douglas, D.J.: An aerodynamic drag model for protein ions. / J. Am. Soc. Mass Spectrom. 5, 17-8 (1994) CrossRef
    47. Chen, Y.L., Collings, B.A., Douglas, D.J.: Collision cross sections of myoglobin and cytochrome / c ions with Ne, Ar, and Kr. / J. Am. Soc. Mass Spectrom. 8, 681-87 (1997) CrossRef
    48. Collings, B.A., Douglas, D.J.: An extended mass range quadrupole for electrospray mass spectrometry. / Int. J. Mass Spectrom. Ion Process. 162, 121-27 (1997) CrossRef
    49. Chen, Y., Campbell, J.M., Collings, B.A., Konermann, L., Douglas, D.J.: Stability of a highly charged noncovalent complex in the gas phase: holomyoglobin. / Rapid Comm. Mass Spectrom. 12, 1003-010 (1998) CrossRef
    50. Mauk, M.R., Mauk, A.G., Chen, Y., Douglas, D.J.: Tandem mass spectrometry of protein-protein complexes: cytochrome / c-cytochrome / b / 5 . / J. Am. Soc. Mass Spectrom. 13, 59-1 (2002) CrossRef
    51. de la Mora, J.F.: Electrospray ionization of large multiply charged species proceeds via Dole’s charged residue mechanism. / Anal. Chim. Acta 406, 93-04 (2000) CrossRef
    52. Hossain, B.M., Konermann, L.: Pulsed hydrogen/deuterium exchange MS/MS for studying the relationship between noncovalent protein complexes in solution and in the gas phase after electrospray ionization. / Anal. Chem. 78, 1613-619 (2006) CrossRef
    53. Rogers, D.A., Ray, S.J., Hieftje, G.M.: An electrospray/inductively coupled plasma dual-source time-of-flight mass spectrometer for rapid metallomic and speciation analysis. Part 1. Molecular channel characterization. / Metallomics 2, 271-79 (2010) CrossRef
    54. Schnier, P.D., Gross, D.S., Williams, E.R.: On the maximum charge state and proton transfer reactivity of peptide and protein ions formed by electrospray ionization. / J. Am. Soc. Mass Spectrom. 6, 1086-097 (1995) CrossRef
    55. Grandori, R.: Origin of the conformation dependence of protein charge-state distributions in electrospray ionization mass spectrometry. / J. Mass Spectrom. 38, 11-5 (2003) CrossRef
    56. Collings, B.A., Douglas, D.J.: Conformation of gas-phase myoglobin ions. / J. Am. Chem. Soc. 118, 4488-489 (1996) CrossRef
    57. Brady, J.J., Judge, E.J., Levis, R.J.: Nonresonant femtosecond laser vaporization of aqueous protein preserves folded structure. / Proc. Natl. Acad. Sci. U. S. A. 108, 12217-2222 (2011) CrossRef
    58. Mahoney, P.P., Guzowski, J.P., Ray, S.J., Hieftje, G.M.: Electrospray ionization time-of-flight mass spectrometer for elemental analysis. / Appl. Spectrosc. 51, 1464-470 (1997) CrossRef
    59. Clemmer, D.E., Hudgins, R.R., Jarrold, M.F.: Naked protein conformations: cytochrome / c in the gas phase. / J. Am. Chem. Soc. 117, 10141-0142 (1995) CrossRef
    60. Bush, M.F., Hall, Z., Giles, K., Hoyes, J., Robinson, C.V., Ruotolo, B.T.: Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. / Anal. Chem. 82, 9557-565 (2010) CrossRef
    61. Yin, S., Xie, Y.M., Loo, J.A.: Mass spectrometry of protein-ligand complexes: enhanced gas-phase stability of ribonuclease–nucleotide complexes. / J. Am. Soc. Mass Spectrom. 19, 1199-208 (2008) CrossRef
    62. Jones, C.M., Beardsley, R.L., Galhena, A.S., Dagan, S., Cheng, G., Wysocki, V.H.: Symmetrical gas-phase dissociation of noncovalent protein complexes via surface collisions. / J. Am. Chem. Soc. 128, 15044-5045 (2006) CrossRef
    63. Jurchen, J.C., Williams, E.R.: Origin of asymmetric charge partitioning in the dissociation of gas-phase protein homodimers. / J. Am. Chem. Soc. 125, 2817-826 (2003) CrossRef
    64. Jurchen, J.C., Garcia, D.E., Williams, E.R.: Further studies on the origins of asymmetric charge partitioning in protein homodimers. / J. Am. Soc. Mass Spectrom. 15, 1408-415 (2004) CrossRef
    65. Felitsyn, N., Kitova, E.N., Klassen, J.S.: Thermal decomposition of a gaseous multiprotein complex studied by blackbody infrared radiative dissociation. Investigating the origin of the asymmetric dissociation behavior. / Anal. Chem. 73, 4647-661 (2001) CrossRef
    66. Erba, E.B., Ruotolo, B.T., Barsky, D., Robinson, C.V.: Ion mobility-mass spectrometry reveals the influence of subunit packing and charge on the dissociation of multiprotein complexes. / Anal. Chem. 82, 9702-710 (2010) CrossRef
    67. Dodd, E.D., Blackwell, A.E., Jones, C.M., Holso, K.L., O’Brien, D.J., Cordes, M.H.J., Wysocki, V.H.: Determinants of gas-phase disassembly behavior in homodimeric protein complexes with related yet divergent structures. / Anal. Chem. 83, 3881-889 (2011) CrossRef
  • 作者单位:Khadijeh Rajabi (1)
    D. J. Douglas (1)

    1. Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
文摘
The effects of binding two small-molecule inhibitors to Agrobacterium sp. strain ATCC 21400 (Abg) β-glucosidase on the conformations and stability of gas-phase ions of Abg have been investigated. Biotin-iminosugar conjugate (BIC) binds noncovalently to Abg while 2,4-dinitro-2-deoxy-2-fluoro-β-d-glucopyranoside (2FG-DNP) binds covalently with loss of DNP. In solution, Abg is a dimer. Mass spectra show predominantly dimer ions, provided care is taken to avoid dissociation of dimers in solution and dimer ions in the ion sampling interface. When excess inhibitor, either covalent or noncovalent, is added to solutions of Abg, mass spectra show peaks almost entirely from 2:2 inhibitor-enzyme dimer complexes. Tandem mass spectrometry experiments show similar dissociation channels for the apo-enzyme and 2FG-enzyme dimers. The +21 dimer produces +10 and +11 monomers. The internal energy required to dissociate the +21 2FG-enzyme to its monomers (767?±-0?eV) is about 36?eV higher than that for the apo-enzyme dimer (731?±-?eV), reflecting the stabilization of the free enzyme dimer by the 2FG inhibitor. The primary dissociation channels for the noncovalent BIC-enzyme dimer are loss of neutral and charged BIC. The internal energy required to induce loss of BIC is 482?±-?eV, considerably less than that required to dissociate the dimers. For a given charge state, ions of the covalent and noncovalent complexes have about 15?% and 25?% lower cross sections, respectively, compared with the apo-enzyme. Thus, binding the inhibitors causes the gas-phase protein to adopt more compact conformations. Noncovalent binding surprisingly produces the greatest change in protein ion conformation, despite the weaker inhibitor binding. Figure ?/div>

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700