用户名: 密码: 验证码:
Wrinkle-free graphene with spatially uniform electrical properties grown on hot-pressed copper
详细信息    查看全文
  • 作者:Jeong Hun Mun ; Joong Gun Oh ; Jae Hoon Bong ; Hai Xu ; Kian Ping Loh
  • 关键词:CVD graphene ; graphene synthesis ; graphene wrinkle ; graphene field effect transistor
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:8
  • 期:4
  • 页码:1075-1080
  • 全文大小:2,161 KB
  • 参考文献:[1]Xu, K; Cao, P.; Heath, J. R. Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers. Nano Lett. 2009, 9, 4446鈥?451.View Article
    [2]Ahmad, M.; Han, S. A.; Tien, D. H.; Jung, J.; Seo, Y. Local conductance measurement of graphene layer using conductive atomic force microscopy. J. Appl. Phys. 2011, 110, 054307.View Article
    [3]Franklin, A. D.; Han, S.-J.; Bol, A. A.; Haensch, W. Effects of nanoscale contacts to graphene. IEEE Elec. Dev. Lett. 2011, 32, 1035鈥?037.View Article
    [4]Yan, L.; Punckt, C.; Aksay, I. A.; Mertin, W.; Bacher, G. Local voltage drop in a single functionalized graphene sheet characterized by Kelvin probe force microscopy. Nano Lett. 2011, 11, 3543鈥?549.View Article
    [5]Zhu, W.; Low, T.; Perebeinos, V.; Bol, A. A.; Zhu, Y.; Yan, H.; Tersoff, J.; Avouris, P. Structure and electronic transport in graphene wrinkles. Nano Lett. 2012, 12, 3431鈥?436.View Article
    [6]Guo, Y.; Guo, W. Electronic and field emission properties of wrinkled graphene. J. Phys. Chem. C 2012, 117, 692鈥?96.View Article
    [7]Lee, J.-K.; Yamazaki, S.; Yun, H.; Park, J.; Kennedy, G. P.; Kim, G.-T.; Pietzsch, O.; Wiesendanger, R.; Lee, S.; Hong, S.; et al. Modification of electrical properties of graphene by substrate-induced nanomodulation. Nano Lett. 2013, 13, 3494鈥?500.View Article
    [8]Wang, C.; Lan L.; Tan, H. The physics of wrinkling in graphene membranes under local tension. Phys. Chem. Chem. Phys. 2013, 15, 2764鈥?773.View Article
    [9]Clark, K. W.; Zhang, X.-G.; Vlassiouk, I. V.; He, G.; Feenstra, R. M.; Li, A.-P. Spatially resolved mapping of electrical conductivity across individual domain (grain) boundaries in graphene. ACS Nano 2013, 7, 7956鈥?966.View Article
    [10]Lanza, M.; Wang, Y.; Bayerl, A.; Gao, T.; Porti, M.; Nafria, M.; Liang, H.; Jing, G.; Liu, Z.; Zhang, Y.; et al. Tuning graphene morphology by substrate towards wrinkle-free devices: Experiment and simulation. J. Appl. Phys. 2013, 113, 104301.View Article
    [11]Mun, J. H.; Cho, B. J. Synthesis of monolayer graphene having a negligible amount of wrinkles by stress relaxation. Nano Lett. 2013, 13, 2496鈥?499.View Article
    [12]Yan, H.; Chu, Z.-D.; Yan, W.; Liu, M.; Meng, L.; Yang, M.; Fan, Y.; Wang, J.; Dou, R.-F.; Zhang, Y.; et al. Superlattice Dirac points and space-dependent Fermi velocity in a corrugated graphene monolayer. Phys. Rev. B 2013, 87, 075405.View Article
    [13]Chae, S. J.; G眉ne艧, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H.; et al. Synthesis of large-area graphene layers on Poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 2009, 21, 2328鈥?333.View Article
    [14]Liu, N.; Pan, Z.; Fu, L.; Zhnag, C.; Dai, B.; Liu, Z. The origin of wrinkles on transferred graphene. Nano Res. 2011, 4, 996鈥?004.View Article
    [15]Luo, Z.; Lu, Y.; Singer, D. W.; Berck, M. E.; Somers, L. A.; Goldsmith, B. R.; Johnson, A. C. Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem. Mater. 2011, 23, 1441鈥?447.View Article
    [16]Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H.-M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424鈥?28.View Article
    [17]Zhang, Y.; Gao, T.; Xie, S.; Dai, B.; Fu, L.; Gao, Y.; Chen, Y.; Liu, M.; Liu, Z. Different growth behaviors of ambient pressure chemical vapor deposition graphene on Ni (111) and Ni films: A scanning tunneling microscopy study. Nano Res. 2012, 5, 402鈥?11.View Article
    [18]Surwade, S. P.; Li, Z.; Liu, H. Thermal oxidation and unwrinkling of chemical vapor deposition-grown graphene. J. Phys. Chem. C 2012, 116, 20600鈥?0606.View Article
    [19]Krell, A. Improved hardness and hierarchic influences on wear in submicron sintered alumina. Mat. Sci. Eng. A 1996, 209, 156鈥?63.View Article
    [20]Onishi, T.; Yoshikawa, T. Application of high-pressure annealing process to dual damascene copper interconnections. Mater. Trans. 2002, 43, 1605鈥?614.View Article
    [21]Shin, D. H.; Park, J.-J.; Kim, Y.-S.; Park, K.-T. Constrained groove pressing and its application to grain refinement of aluminum. Mat. Sci. Eng. A 2002, 328, 98鈥?03.View Article
    [22]Genin, F.; Mullins, W.; Wynblatt, P. The effect of stress on grain boundary grooving. Acta Metall. Mater. 1993, 41, 3541鈥?547.View Article
    [23]Volkert, C.; Lingk, C. Effect of compression on grain growth in Al films. Appl. Phys. Lett. 1998, 73, 3677鈥?679.View Article
    [24]Ferrari, A.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.View Article
    [25]Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano Lett. 2007, 7, 238鈥?42.View Article
  • 作者单位:Jeong Hun Mun (1)
    Joong Gun Oh (1)
    Jae Hoon Bong (1)
    Hai Xu (2)
    Kian Ping Loh (2)
    Byung Jin Cho (1)

    1. Department of Electrical Engineering, KAIST, Daejeon, 305-701, Korea
    2. Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
The chemical vapor deposition (CVD) of graphene on Cu substrates enables the fabrication of large-area monolayer graphene on desired substrates. However, during the transfer of the synthesized graphene, topographic defects are unavoidably formed along the Cu grain boundaries, degrading the electrical properties of graphene and increasing the device-to-device variability. Here, we introduce a method of hot-pressing as a surface pre-treatment to improve the thermal stability of Cu thin film for the suppression of grain boundary grooving. The flattened Cu thin film maintains its smooth surface even after the subsequent high temperature CVD process necessary for graphene growth, and the formation of graphene without wrinkles is realized. Graphene field effect transistors (FETs) fabricated using the graphene synthesized on hot-pressed Cu thin film exhibit superior field effect mobility and significantly reduced device-to-device variation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700