Ras/myc-transformed serum-free mouse embryo cells under simulated inflammatory and infectious conditions increase levels of nitric oxide and matrix metalloproteinase-9 without a direct association between them
详细信息    查看全文
文摘
Inflammatory and infectious conditions were simulated in cultures of ras/myc-transformed serum-free mouse embryo (ras/myc SFME) cells, using interferon-gamma (IFN-γ, 100 units/ml) and lipopolysaccharide (LPS, 0.5 μg/ml) co-treatment for 24 h, to investigate their effects on the expression of inducible nitric oxide synthase (iNOS) mRNA and the production of NO. Aminoguanidine (AG, 1 mM; an NOS inhibitor) along with IFN-γ and LPS, S-nitroso-N-acetyl-DL-penicillamine (SNAP, 100 μM; an NO donor) and/or (¡À)-N-[(E)-4-Ethyl-2-[(Z)-hydroxyimino]-5-nitro-3-hexene-1-yl]-3-pyridine carboxamide (NOR4, 100 μM; an NO donor), were also added to analyze the possible association of NO with matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1). Co-treatment of cells with IFN-γ and LPS increased iNOS mRNA expression, NO production, MMP-9 mRNA expression, and 105 kDa MMP-9 production. Additional treatment with the NOS inhibitor AG inhibited NO production, but did not down-regulate the expression of MMP-9 mRNA or 105 kDa MMP-9. The NO donors SNAP and NOR4 did not affect the expression of MMP-9 mRNA, 105 kDa MMP-9 or TIMP-1 mRNA. These results suggest that ras/myc SFME cells respond to infectious and inflammatory conditions and can enhance malignancy as cancer cells due to their increased levels of NO and MMP-9 production, but that NO is not directly associated with MMP-9 in these cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700