Rapid, cost-effective DNA quantification via a visually-detectable aggregation of superparamagnetic silica-magnetite nanoparticles
详细信息    查看全文
  • 作者:Qian Liu (1) (4)
    Jingyi Li (1) (4)
    Hongxue Liu (5)
    Ibrahim Tora (1)
    Matthew S. Ide (6)
    Jiwei Lu (5)
    Robert J. Davis (6)
    David L. Green (6)
    James P. Landers (1) (2) (3) (4)
  • 关键词:silica/magnetite ; core ; shell ; superparamagnetic ; DNA quantification ; polymerase chain reaction ; (PCR)
  • 刊名:Nano Research
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:7
  • 期:5
  • 页码:755-764
  • 全文大小:
  • 参考文献:1. Penn, S. G.; He, L.; Natan, M. J. Nanoparticles for bioanalysis. / Curr. Opin. Chem. Biol. 2003, / 7, 609-15. CrossRef
    2. Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. / J. Phys. D: Appl. Phys. 2003, / 36, R167–R181. CrossRef
    3. Willner, I.; Katz, E. Magnetic control of electrocatalytic and bioelectrocatalytic processes. / Angew. Chem. Int. Ed. 2003, / 42, 4576-588. CrossRef
    4. Xu, C. J.; Xu, K. M.; Gu, H. W.; Zhong, X. F.; Guo, Z. H.; Zheng, R. K.; Zhang, X. X.; Xu, B. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. / J. Am. Chem. Soc. 2004, / 126, 3392-393. CrossRef
    5. Perez, J. M.; O’Loughin, T.; Simeone, F. J.; Weissleder, R.; Josephson, L. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. / J. Am. Chem. Soc. 2002, / 124, 2856-857. CrossRef
    6. Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. / Chem. Rev. 2008, / 108, 2064-110. CrossRef
    7. Frey, N. A.; Peng, S.; Cheng, K.; Sun, S. H. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. / Chem. Soc. Rev. 2009, / 38, 2532-542. CrossRef
    8. Huang, S.-H.; Juang, R.-S. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: A review. / J. Nanopart. Res. 2011, / 13, 4411-430. CrossRef
    9. Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. / Biomaterials 2005, / 26, 3995-021. CrossRef
    10. Suh, S. K.; Yuet, K.; Hwang, D. K.; Bong, K. W.; Doyle, P. S.; Hatton, T. A. Synthesis of nonspherical superparamagnetic particles: / In situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography. / J. Am. Chem. Soc. 2012, / 134, 7337-343. CrossRef
    11. Drmota, A.; Drofenik, M.; Koselj, J.; ?nidar?i?, A. Microemulsion method for synthesis of magnetic oxide nanoparticles. In / Microemulsions-An Introduction to Properties and Applications. Najjar, R., Ed.; InTech: Croatia, 2012; pp 191-14.
    12. Okoli, C.; Sanchez-Dominguez, M.; Boutonnet, M.; J?r?s, S.; Civera, C.; Solans, C.; Kuttuva, G. R. Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles. / Langmuir 2012, / 28, 8479-485. CrossRef
    13. Lee, J.; Lee, Y.; Youn, J. K.; Na, H. B.; Yu, T.; Kim, H.; Lee, S.-M.; Koo, Y.-M.; Kwak, J. H.; Park, H. G., et al. Simple synthesis of functionalized superparamagnetic magnetite/silic core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. / Small 2008, / 4, 143-52. CrossRef
    14. Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Monodisperse magnetic single-crystal ferrite microspheres. / Angew. Chem. Int. Ed. 2005, / 44, 2782-785. CrossRef
    15. Cheng, C. M.; Wen, Y. H.; Xu, X. F.; Gu, H. C. Tunable synthesis of carboxyl-functionalized magnetite nanocrystal clusters with uniform size. / J. Mater. Chem. 2009, / 19, 8782-788. CrossRef
    16. Ge, J. P.; Hu, Y. X.; Biasini, M.; Beyermann, W. P.; Yin, Y. D. Superparamagnetic magnetite colloidal nanocrystal clusters with uniform size. / Angew. Chem. Int. Ed. 2007, / 46, 4342-345. CrossRef
    17. Si, S. F.; Li, C. H.; Wang, X.; Yu, D. P.; Peng, Q.; Li, Y. D. Magnetic monodisperse Fe3O4 nanoparticles. / Cryst. Growth Des. 2005, / 5, 391-93. CrossRef
    18. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. / Nature 2005, / 437, 121-24. CrossRef
    19. Jia, X.; Chen, D. R.; Jiao, X. L.; Zhai, S. M. Environmentally-friendly preparation of water-dispersible magnetite nanoparticles. / Chem. Commun. 2009, 968-70.
    20. Wang, J.; Yao, M.; Xu, G. J.; Cui, P.; Zhao, J. T. Synthesis of monodisperse nanocrystals of high crystallinity magnetite through solvothermal process. / Mater. Chem. Phys. 2009, / 113, 6-. CrossRef
    21. Beaven, G. H.; Holiday, E. R.; Johnson, E. A. Optical properties of nucleic acids and their components. In / The Nucleic Acids. Volume 1. Chargaff, E., Davidson, J. N., Eds.; New York: Academic Press, 1955; pp 493-53.
    22. Ahn S. J.; Costa, J.; Emanuel J. R. PicoGreen quantitation of DNA: Effective evaluation of samples pre- or post-PCR. / Nucl. Acids Res., 1996, / 24, 2623-625. CrossRef
    23. Sanchez J. L.; Storch, G. A. Multiplex, quantitative, real-time PCR assay for cytomegalovirus and human DNA. / J. Clin. Microbiol. 2002, / 40, 2381-386. CrossRef
    24. Leslie, D. C.; Li, J. Y.; Strachan, B. C.; Begley, M. R.; Finkler, D.; Bazydlo, L. A.; Barker, N. S.; Haverstick, D. M.; Utz, M.; Landers, J. P. New detection modality for label-free quantification of DNA in biological samples via superparamagnetic bead aggregation. / J. Am. Chem. Soc. 2012, / 134, 5689-696. CrossRef
    25. Li, J. Y.; Liu, Q.; Alsamarri, H.; Lounsbury, J. A.; Haversitick, D. M.; Landers, J. P. Label-free DNA quantification via a-pipette, aggregate and blot-(PAB) approach with magnetic silica particles on filter paper. / Lab Chip 2013, / 13, 955-61. CrossRef
    26. Melzak, K. A.; Sherwood, C. S.; Turner, R. F. B.; Haynes, C. A. Driving forces for DNA adsorption to silica perchlorate solutions. / J. Colloid. Interface Sci. 1996, / 181, 635-44. CrossRef
    27. Luger, K.; M?der, A. W.; Richmond, R. K.; Sargent, D. F.; Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 ? resolution. / Nature 1997, / 389, 251-60. CrossRef
    28. Rivetti, C.; Codeluppi, S. Accurate length determination of DNA molecules visualized by atomic force microscopy: Evidence for a partial B- to A-form transition on mica. / Ultramicroscopy 2001, / 87, 55-6. CrossRef
    29. Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of gases in multimolecular layers. / J. Am. Chem. Soc. 1938, / 60, 309-19. CrossRef
    30. Dodson, M. H.; McClelland-Brown, E. Magnetic blocking temperatures of single-domain grains during slow cooling. / J. Geophys. Res.: Solid Earth 1980, / 85, 2625-637. CrossRef
    31. Andersen, J. Quantification of DNA by slot-blot analysis. / MethodsMol. Biol. 1998, / 98, 33-8.
    32. Breadmore, M. C.; Wolfe, K. A.; Arcibal, I. G.; Leung, W. K.; Dickson, D.; Giordano, B. C.; Power, M. E.; Ferrance, J. P.; Feldman, S. H.; Norris, P. M., et al. Microchip-based purification of DNA from biological samples. / Anal. Chem. 2003, / 75, 1880-886. CrossRef
    33. Lounsbury, J. A.; Coult, N.; Miranian, D. C.; Cronk, S. M.; Haverstick, D. M.; Kinnon, P.; Saul, D. J.; Landers, J. P. An enzyme-based DNA preparation method for application to forensic biological samples and degraded. / Forensic Sci. Int.: Genet. 2012, / 6, 607-15. CrossRef
    34. Golenberg, E. M.; Bickel, A.; Weihs, P. Effect of highly fragmented DNA on PCR. / Nucl. Acids Res. 1996, / 24, 5026-033. CrossRef
    35. Ginoza, W.; Zimm, B. H. Mechanisms of inactivation of deoxyribonucleic acids by heat. / Proc. Natl. Acad. Sci. 1961, / 47, 639-52. CrossRef
    36. Lindahl, T.; Nyberg, B. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. / Biochemistry 1974, / 13, 3405-410. CrossRef
    37. Liu, J.; Sun, Z. K.; Deng, Y. H.; Zou, Y.; Li, C. Y.; Guo, X. H.; Xiong, L. Q.; Gao, Y.; Li, Fu. Y.; Zhao, D. Y. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. / Angew. Chem. Int. Ed. 2009, / 48, 5875-879. CrossRef
    38. Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. / J. Am. Chem. Soc. 2008, / 130, 28-9. CrossRef
    39. Masters, J. R.; Thomson, J. A.; Daly-Burns, B.; Reid, Y. A.; Dirks, W. G.; Packer, P.; Toji, L. H.; Ohno, T.; Tanabe, H.; Arlett, C. F. et al. Short tandem repeat profiling provides an international reference standard for human cell lines. / Proc. Natl. Acad. Sci. 2001, / 98, 8012-017. CrossRef
  • 作者单位:Qian Liu (1) (4)
    Jingyi Li (1) (4)
    Hongxue Liu (5)
    Ibrahim Tora (1)
    Matthew S. Ide (6)
    Jiwei Lu (5)
    Robert J. Davis (6)
    David L. Green (6)
    James P. Landers (1) (2) (3) (4)

    1. Department of Chemistry, University of Virginia, McCormick Road, P. O. Box 400319, Charlottesville, Virginia, 22904, USA
    4. Center for Microsystems for the Life Sciences, University of Virginia, Charlottesville, Virginia, 22904, USA
    5. Department of Materials Science & Engineering, University of Virginia, P. O. Box 400745, 395 McCormick Road, Charlottesville, Virginia, 22904-4745, USA
    6. Department of Chemical Engineering, University of Virginia, 123 Engineers-Way, Charlottesville, Virginia, 22904, USA
    2. Department of Pathology, University of Virginia Health Science Center, Charlottesville, Virginia, 22908, USA
    3. Department of Mechanical Engineering, University of Virginia, Charlottesville, Virginia, 22904, USA
  • ISSN:1998-0000
文摘
DNA and silica-coated magnetic particles entangle and form visible aggregates under chaotropic conditions with a rotating magnetic field, in a manner that enables quantification of DNA by image analysis. As a means of exploring the mechanism of this DNA quantitation assay, nanoscale SiO2-coated Fe3O4 (Fe3O4@SiO2) particles are synthesized via a solvothermal method. Characterization of the particles defines them to be ?00 nm in diameter with a large surface area (141.89 m2/g), possessing superparamagnetic properties and exhibiting high saturation magnetization (38 emu/g). The synthesized Fe3O4@SiO2 nanoparticles are exploited in the DNA quantification assay and, as predicted, the nanoparticles provide better sensitivity than commercial microscale Dynabeads? for quantifying DNA, with a detection limit of 4 kilobase-pair fragments of human DNA. Their utility is proven using nanoparticle DNA quantification to guide efficient polymerase chain reaction (PCR) amplification of short tandem repeat loci for human identification.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700