Discrepancies between the stable isotope compositions of water, macrophyte carbonates and organics, and mollusc shells in the littoral zone of a charophyte-dominated lake (Lake Lednica, Poland)
详细信息    查看全文
  • 作者:Karina Apolinarska ; Mariusz Pełechaty ; Eugeniusz Pronin
  • 关键词:Stable C and O isotopes ; Lake water ; Mollusc shells ; Macrophytes ; Encrustations ; Characeae
  • 刊名:Hydrobiologia
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:768
  • 期:1
  • 页码:1-17
  • 全文大小:1,294 KB
  • 参考文献:Anadón, P., M. Martín-Rubio, F. Robles, J. Rodriguez-Lázaro, R. Utrilla & A. Vázquez, 2010. Variation in Sr uptake in the shell of the freshwater gastropod Bithynia tentaculata from Lake Arreo (northern Spain) and culture experiments. Palaeogeography, Palaeoclimatology, Palaeoecology 288(1–4): 24–34.CrossRef
    Andersson, S., G. Rosqvist, M. J. Leng, S. Wastegård & M. Blaauw, 2010. Late Holocene climate change in central Sweden inferred from lacustrine stable isotope data. Journal of Quaternary Science 25(8): 1305–1316.CrossRef
    Andrews, J. E., R. Riding & P. F. Dennis, 1997. The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 129(1): 171–189.CrossRef
    Andrews, J. E., P. Coletta, A. Pentecost, R. Riding, S. Dennis, P. F. Dennis & B. Spiro, 2004. Equilibrium and disequilibrium stable isotope effects in modern charophyte calcites: implications for palaeoenvironmental studies. Palaeogeography, Palaeoclimatology, Palaeoecology 204(1–2): 101–114.CrossRef
    Apolinarska, K., 2013. Stable isotope compositions of recent Dreissena polymorpha (Pallas) shells: paleoenvironmental implications. Journal of Paleolimnology 50(3): 353–364.CrossRef
    Apolinarska, K. & D. Hammarlund, 2009. Multi-component stable isotope records from Late Weichselian and early Holocene lake sediments at Imiołki, Poland: palaeoclimatic and methodological implications. Journal of Quaternary Science 24(8): 948–959.CrossRef
    Aucour, A., S. Sheppard & R. Savoye, 2003. δ13C of fluvial mollusk shells (Rhone River): a proxy for dissolved inorganic carbon? Limnology and Oceanography 48: 2186–2193.CrossRef
    Brand, W. A., B. Coplen Tyler, J. Vogl, M. Rosner & T. Prohaska, 2014. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure and Applied Chemistry 86: 425.CrossRef
    Bucci, J. P., W. J. Showers, B. Genna & J. F. Levine, 2009. Stable oxygen and carbon isotope profiles in an invasive bivalve (Corbicula fluminea) in North Carolina watersheds. Geochimica et Cosmochimica Acta 73(11): 3234–3247.CrossRef
    Coletta, P., A. Pentecosta & B. Spiro, 2001. Stable isotopes in charophyte incrustations: relationships with climate and water chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology 173(1–2): 9–19.CrossRef
    Coplen, T. B., 2011. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Communications in Mass Spectrometry 25(17): 2538–2560.PubMed CrossRef
    Craig, H., 1965. The Measurement of Oxygen Isotope Temperatures. In Tongiorgi, E. (ed.), Stable Isotopes in Oceanographic Studies and Paleotemperatures. Spoleto, Italy: 161–182.
    De Francesco, C. G. & G. S. Hassan, 2013. Stable isotope composition of freshwater mollusk shells from central-western Argentina. Revista Brasileira de Paleontologia 16(2): 213–224.CrossRef
    DeNiro, M. J. & S. Epstein, 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42: 495–506.CrossRef
    Dettman, D. L., A. K. Reische & K. C. Lohmann, 1999. Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (unionidae). Geochimica et Cosmochimica Acta 63(7–8): 1049–1057.CrossRef
    Fiebig, J., B. R. Schöne & W. Oschmann, 2005. High-precision oxygen and carbon isotope analysis of very small (10–30 µg) amounts of carbonates using continuous flow isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry 19(16): 2355–2358.PubMed CrossRef
    Fiszer, M. & M. Michałkiewicz, 1998. Ocena stanu zanieczyszczenia Jeziora Lednica na podstawie badań fizyko-chemicznych epilimnionu i hypolimnionu. Studia Lednickie 5: 269–280.
    Fritz, P. & S. Poplawski, 1974. 18O and 13C in the shells of freshwater molluscs and their environments. Earth and Planetary Science Letters 24(1): 91–98.CrossRef
    Frömming, E., 1956. Biologie der mitteleuropäischen Süßwasserschnecken. Duncker & Humblot, Berlin.
    Grossman, E. L. & T. L. Ku, 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effect. Chemical Geology 59: 59–74.CrossRef
    Hammarlund, D., S. Björck, B. Buchardt, C. Israelson & C. T. Thomsen, 2003. Rapid hydrological changes during the Holocene revealed by stable isotope records of lacustrine carbonates from Lake Igelsjön, southern Sweden. Quaternary Science Reviews 22(2–4): 353–370.CrossRef
    Hodell, D. A., M. Brenner, J. H. Curtis, R. Medina-González, E. Ildefonso-Chan Can, A. Albornaz-Pat & T. P. Guilderson, 2005. Climate change on the Yucatan Peninsula during the little ice age. Quaternary Research 63(2): 109–121.CrossRef
    Jańczak, J., 1991. Fizycznogeograficzna typologia i ocena jezior na przykładzie Pojezierza Wielkopolskiego. Instytut Meteorologii i Gospodarki Wodnej, Warsaw.
    Kaandorp, R. J. G., H. B. Vonhof, C. Del Busto, F. P. Wesselingh, G. M. Ganssen, A. E. Marmól, L. Romero Pittman & J. E. van Hinte, 2003. Seasonal stable isotope variations of the modern Amazonian freshwater bivalve Anodontites trapesialis. Palaeogeography, Palaeoclimatology, Palaeoecology 194(4): 339–354.CrossRef
    Keeley, J. E. & D. Sandquist, 1992. Carbon: freshwater plants. Plant, Cell & Environment 15(9): 1021–1035.CrossRef
    Kolendowicz, L., 1992. Wahania poziomu wód Jeziora Lednickiego w świetle badań osadów terasowych. Badania Fizjograficzne nad Polską Zachodnią 43A: 47–53.
    Kondracki, J., 2000. Geografia regionalna Polski. Państwowe Wydawnictwo Naukowe, Warsaw.
    Leng, M. J., A. L. Lamb, H. F. Lamb & R. J. Telford, 1999. Palaeoclimatic implications of isotopic data from modern and early Holocene shells of the freshwater snail Melanoides tuberculata, from lakes in the Ethiopian Rift Valley. Journal of Paleolimnology 21(1): 97–106.CrossRef
    Leng, M. J., A. L. Lamb, T. H. E. Heaton, J. D. Harshall, B. B. Wolfe, M. D. Jones, J. A. Holmes & C. Arrowsmith, 2005. Isotopes in Lake Sediments. In Leng, M. (ed.), Isotopes in Palaeoenvironmental Research ISOTOPES in Lake Sediments. Springer, Berlin: 147–184.
    Martin, G., K. Torn, I. Blindow, H. Schubert, R. Munsterhjelm & C. Henricson, 2003. Introduction to Charophytes. In Schubert, H. & I. Blindow (eds) Charophytes of the Baltic Sea. The Baltic Marine Biologists Publications. Alfried Krupp von Bohlen und Halbach - Stiftung, Ruggel: 3–14.
    McConnaughey, T., 1989. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochimica et Cosmochimica Acta 53: 151–162.CrossRef
    McConnaughey, T. & D. Gillikin, 2008. Carbon isotopes in mollusk shell carbonates. Geo-Mar Lett 28(5–6): 287–299.CrossRef
    McConnaughey, T. A., J. Burdett, J. F. Whelan & C. K. Paull, 1997. Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochimica et Cosmochimica Acta 61(3): 611–622.CrossRef
    Mook, W. G., J. C. Bommerson & W. H. Staverman, 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters 22(2): 169–176.CrossRef
    Pańczakowa, J., 1991. Struktura elementów abiotycznych ekosystemu Jeziora Lednica. Studia Lednickie 2: 315–334.
    Pełechaty, M., 2005. Does spatially varied phytolittoral vegetation with significant contribution of charophytes cause spatial and temporal heterogeneity of physical-chemical properties of the pelagic waters of a tachymictic lake? Polish Journal of Environmental Studies 14: 63–73.
    Pełechaty, M., K. Apolinarska, A. Pukacz, J. Krupska, M. Siepak, P. Boszke & M. Sinkowski, 2010. Stable isotope composition of Chara rudis incrustation in Lake Jasne, Poland. Hydrobiologia 656(1): 29–42.CrossRef
    Pełechaty, M., A. Pukacz, K. Apolinarska, A. Pełechata & M. Siepak, 2013a. The significance of Chara vegetation in the precipitation of lacustrine calcium carbonate. Sedimentology 60(4): 1017–1035.CrossRef
    Pełechaty, M., K. Apolinarska, J. Krupska, E. Pronin, A. Pukacz & P. Boszke, 2013b. Relationships Between Stable C and O Isotope Signatures of Charophyte Carbonates and Lake Waters. In 10th Applied Isotope Geochemistry Conference, Budapest, Hungary, 22–27 September 2013, Vol. 56. Abstracts in Central European Geology: 97–98.
    Pełechaty, M., J. Ossowska, A. Pukacz, K. Apolinarska & M. Siepak, 2015. Site-dependent species composition, structure and environmental conditions of Chara tomentosa L. meadows, western Poland. Aquatic Botany Part A 120: 92–100.CrossRef
    Pentecost, A. & B. Spiro, 1990. Stable carbon and oxygen isotope composition of calcites associated with modern freshwater cyanobacteria and algae. Geomicrobiology Journal 8(1): 17–26.CrossRef
    Pentecost, A., J. E. Andrews, P. F. Dennis, A. Marca-Bell & S. Dennis, 2006. Charophyte growth in small temperate water bodies: Extreme isotopic disequilibrium and implications for the palaeoecology of shallow marl lakes. Palaeogeography, Palaeoclimatology, Palaeoecology 240(3–4): 389–404.CrossRef
    Pukacz, A., M. Pełechaty & M. Frankowski, 2014. Carbon Dynamics in a hardwater Lake: effect of charophytes biomass on carbonate deposition. Polish Journal of Ecology 62: 743–753.CrossRef
    Romanek, C. S., E. L. Grossman & J. W. Morse, 1992. Carbon isotope fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta 56: 419–430.CrossRef
    Schöll-Barna, G., A. Demény, G. Serlegi, S. Fábián, P. Sümegi, I. Fórizs & B. Bajnóczi, 2012. Climatic variability in the Late Copper Age: stable isotope fluctuation of prehistoric Unio pictorum (Unionidae) shells from Lake Balaton (Hungary). Journal of Paleolimnology 47(1): 87–100.CrossRef
    Shanahan, T. M., J. S. Pigati, D. L. Dettman & J. Quade, 2005. Isotopic variability in the aragonite shells of freshwater gastropods living in springs with nearly constant temperature and isotopic composition. Geochimica et Cosmochimica Acta 69(16): 3949–3966.CrossRef
    Spötl, C. & T. W. Vennemann, 2003. Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Communications in Mass Spectrometry 17(9): 1004–1006.PubMed CrossRef
    Stańczykowska, A. & K. Lewandowski, 1993. Effect of filtering activity of Dreissena polymorpha (Pall.) on the nutrient budget of the littoral of Lake Mikołajskie. Hydrobiologia 251(1–3): 73–79.CrossRef
    Stumm, W. & J. J. Morgan, 2012. Aquatic chemistry, chaemical equilibria and rates in natural waters, vol 126. John Wiley & Sons.
    Taft, L., U. Wiechert, F. Riedel, M. Weynell & H. Zhang, 2012. Sub-seasonal oxygen and carbon isotope variations in shells of modern Radix sp. (Gastropoda) from the Tibetan Plateau: potential of a new archive for palaeoclimatic studies. Quaternary Science Reviews 34: 44–56.CrossRef
    Talbot, M. R. & T. Johannessen, 1992. A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth and Planetary Science Letters 110(1–4): 23–37.CrossRef
    Tarutani, T., R. N. Clayton & T. K. Mayeda, 1969. The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochimica et Cosmochimica Acta 33(8): 987–996.CrossRef
    Tybiszewska, E. & M. Szulczyńska, 2003. Stan czystości jeziora Lednica w roku 2002. Komunikat nr 228. Wojewódzki Inspektorat Ochrony Środowiska w Poznaniu.
    van Geldern, R. & J. A. C. Barth, 2012. Optimization of instrument setup and post-run corrections for oxygen and hydrogen stable isotope measurements of water by isotope ratio infrared spectroscopy (IRIS). Limnology and Oceanography: Methods 10: 1024–1036.CrossRef
    Vander Zanden, M. J., 2001. Variation in δ15N and δ13C trophic fractionation: implication for aquatic food web studies. Limnoloogy and Oceanography 46: 2061–2066.CrossRef
    Versteegh, E. A. A., H. B. Vonhof, S. R. Troelstra, R. J. G. Kaandorp & D. Kroon, 2010. Seasonally resolved growth of freshwater bivalves determined by oxygen and carbon isotope shell chemistry. Geochemistry, Geophysics, Geosystems 11(8): Q08022.CrossRef
    von Grafenstein, U., U. Eicher, H. Erlenkeuser, P. Ruch, J. Schwander & B. Ammann, 2000. Isotope signature of the Younger Dryas and two minor oscillations at Gerzensee (Switzerland): palaeoclimatic and palaeolimnologic interpretation based on bulk and biogenic carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology 159(3–4): 215–229.CrossRef
    Wu, J., G. H. Schleser, A. Lücke & S. Li, 2007. A stable isotope record from freshwater lake shells of the eastern Tibetan Plateau, China, during the past two centuries. Boreas 36(1): 38–46.CrossRef
    Wurster, C. & W. Patterson, 2001. Seasonal variation in stable oxygen and carbon isotope values recovered from modern lacustrine freshwater mollusks: paleoclimatological implications for sub-weekly temperature records. Journal of Paleolimnology 26(2): 205–218.CrossRef
    Yoshimura, T., R. Nakashima, A. Suzuki, N. Tomioka & H. Kawahata, 2010. Oxygen and carbon isotope records of cultivated freshwater mussel Hyriopsis sp. Shell from Lake Kasumigaura, Japan. Journal of Paleolimnology 43: 437–448.CrossRef
    Yu, Z., 2000. Ecosystem response to Lateglacial and early Holocene climate oscillations in the Great Lakes region of North America. Quaternary Science Reviews 19(17–18): 1723–1747.CrossRef
    Zhang, J., P. D. Quay & D. O. Wilbur, 1995. Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochimica et Cosmochimica Acta 59: 107–114.CrossRef
  • 作者单位:Karina Apolinarska (1)
    Mariusz Pełechaty (2)
    Eugeniusz Pronin (2)

    1. Faculty of Geographical and Geological Sciences, Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606, Poznan, Poland
    2. Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Hydrobiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5117
文摘
The aim of this study was to better understand the relations between carbon and oxygen stable isotope values of ambient water, mollusc shells, macrophytes and their carbonate encrustations, commonly used in palaeolimnological studies. Water, molluscs and macrophytes were sampled from the littoral zone in Lake Lednica, NW Poland. The influence of carbon species assimilated during photosynthesis and the net intensity of photosynthesis resulting from the size of charophyte species and the density of their stands were postulated to be the most important factors causing the species-specific δ13C values of charophyte thalli and encrustations. It was suggested that photosynthetic activity of charophytes affected not only the δ13C values of charophyte encrustations but also mollusc shells by changing δ13C values of DIC within charophyte stands. In addition, incorporation of metabolic carbon into the shell was proposed as the main cause of both the 13C depletion of mollusc shells relative to δ13C values of DIC and the species-specific δ13C values of shells. Mollusc shells were precipitated at the isotope equilibrium or close to the equilibrium with δ18O values of lake water. Charophyte encrustations were found to be 18O depleted due to the kinetic isotope effects during intense photosynthesis and thus fast precipitation of the calcite. Keywords Stable C and O isotopes Lake water Mollusc shells Macrophytes Encrustations Characeae

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700