A two-scale generalized finite element method for fatigue crack propagation simulations utilizing a fixed, coarse hexahedral mesh
详细信息    查看全文
  • 作者:P. O’Hara ; J. Hollkamp ; C. A. Duarte ; T. Eason
  • 关键词:Generalized finite elements ; Multi ; scale methods ; Partition ; of ; unity methods ; Computational fracture mechanics ; hp ; Methods
  • 刊名:Computational Mechanics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:57
  • 期:1
  • 页码:55-74
  • 全文大小:3,258 KB
  • 参考文献:1.Anderson TL (2005) Fracture mechanics: fundamentals and applications. CRC Press, Boca Raton
    2.Arnold DN, Mukherjee A, Pouly L (2000) Locally adapted tetrahedral meshes using bisection. SIAM J Sci Comput 22(2):431–448MathSciNet CrossRef MATH
    3.Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40:727–758CrossRef MATH
    4.Babuška I, Ihlenburg F, Paik E, Sauter S (1995) A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution. Comput Methods Appl Mech Eng 128(3–4):325–360CrossRef MATH
    5.Bansch E (1991) Local mesh refinement in 2 and 3 dimensions. Impact Comput Sci Eng 3:181–191MathSciNet CrossRef
    6.Becker EB, Becker GF, Oden JT (1981) Finite elements: an introduction, vol 1., Texas finite element seriesPrentice-Hall, Englewood CliffsMATH
    7.Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620MathSciNet CrossRef MATH
    8.Belytschko T, Fish J, Bayliss A (1990) The spectral overlay on finite elements for problems with high gradients. Comput Methods Appl Mech Eng 81:71–89CrossRef MATH
    9.Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element methods for material modeling. Model Simul Mater Sci Eng 17:24. doi:10.​1088/​0965-0393/​17/​4/​043001 CrossRef
    10.Costabel M, Dauge M, Yosibash Z (2004) A quasidual function method for extracting edge stress intensity functions. SIAM J Math Anal 35(5):1177–1202MathSciNet CrossRef MATH
    11.Demkowicz L (2006) Computing with Hp-adaptive finite elements, vol 1., One and two dimensional elliptic and Maxwell problemsChapman & Hall/CRC, LondonCrossRef
    12.Demkowicz L, Oden JT, Rachowicz W, Hardy O (1989) Toward a universal h-p adaptive finite element strategy. Part 1. Constrained approximation and data structure. Comput Methods Appl Mech Eng 77:79–112MathSciNet CrossRef MATH
    13.Dhatt G, Touzot G (1984) The finite element method displayed. Wiley, New YorkMATH
    14.Dompierre J, Labb P, Vallet M-G, Camarero R (1999) How to subdivide pyramids, prisms and hexahedra into tetrahedra. Rapport CERCA R99-78
    15.Duarte CA, Babuška I (2002) Mesh-independent directional p-enrichment using the generalized finite element method. Int J Numer Methods Eng 55(12):1477–1492. doi:10.​1002/​nme.​557 CrossRef MATH
    16.Duarte CA, Kim D-J (2008) Analysis and applications of a generalized finite element method with global-local enrichment functions. Comput Methods Appl Mech Eng 197(6–8):487–504. doi:10.​1016/​j.​cma.​2007.​08.​017 MathSciNet CrossRef MATH
    17.Duarte CA, Babuška I, Oden JT (2000) Generalized finite element methods for three dimensional structural mechanics problems. Comput Struct 77:215–232. doi:10.​1016/​S0045-7949(99)00211-4 CrossRef
    18.Duarte CA, Hamzeh ON, Liszka TJ, Tworzydlo WW (2001) A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Comput Methods Appl Mech Eng 190(15–17):2227–2262. doi:10.​1016/​S0045-7825(00)00233-4 CrossRef MATH
    19.Duarte CAM, Oden JT (1995). Hp clouds–A meshless method to solve boundary-value problems. Technical Report 95-05, TICAM, The University of Texas at Austin, May 1995
    20.Fish J (1992) The s-version of the finite element method. Comput Struct 43:539–547CrossRef MATH
    21.Fish J, Nath A (1993) Adaptive and hierarchical modelling of fatigue crack propagation. Int J Numer Methods Eng 36:2825–2836CrossRef MATH
    22.Fries T-P, Belytschko T (2010) The generalized/extended finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84:253–304MathSciNet MATH
    23.Fries TP, Byfut A, Alizada A, Cheng KW, Schroder A (2011) Hanging nodes and xfem. Int J Numer Methods Eng 86:404–430MathSciNet CrossRef MATH
    24.Garzon J, Duarte CA, Pereira JP (2013) Extraction of stress intensity factors for simulations of 3-D crack growth with the generalized finite element method. Key Eng Mater 560:1–36 (Special issue on Advances in Crack Growth Modelling)CrossRef
    25.Garzon J, O’Hara P, Duarte CA, Buttlar W (2014) Improvements of explicit crack surface representation and update within the generalized finite element method with application to three-dimensional crack coalescence. Int J Numer Methods Eng 97:231–273. doi:10.​1002/​nme.​4573 CrossRef
    26.Ghosh S, Raghavan P (2004) Multi-scale model for damage analysis in fiber reinforced composites with interfacial debonding materials. Int J Multiscale Comput Eng 2(4):621–645CrossRef
    27.Ghosh S, Lee K, Raghavan P (2001) A multi-level computational model for multi-scale analysis in composite and porous materials. Int J Solids Struct 38:2335–2385CrossRef MATH
    28.Gupta V, Kim D-J, Duarte CA (2012a) Extensions of the two-scale generalized finite element method to nonlinear fracture problems. Int J Multiscale Comput Eng. Accepted for publication
    29.Gupta V, Kim D-J, Duarte CA (2012) Analysis and improvements of global-local enrichments for the generalized finite element method. Comput Methods Appl Mech Eng 245–246:47–62. doi:10.​1016/​j.​cma.​2012.​06.​021 MathSciNet CrossRef
    30.Holl M, Loehnert S, Wriggers P (2013) An adaptive multiscale method for crack propagation and crack coalescence. Int J Numer Methods Eng 93(1):23–51MathSciNet CrossRef
    31.Holl M, Rogge T, Loehnert S, Wriggers P, Rolfes R (2014) 3D multiscale crack propagation usingthe xfem applied to a gas turbine blade. Comput Mech 53:1MathSciNet CrossRef
    32.Hou TY, Wu X-H (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys 134:169–189MathSciNet CrossRef MATH
    33.Kim D-J, Pereira JP, Duarte CA (2010) Analysis of three-dimensional fracture mechanics problems: a two-scale approach using coarse generalized FEM meshes. Int J Numer Methods Eng 81(3):335–365. doi:10.​1002/​nme.​2690 MATH
    34.Kim D-J, Duarte CA, Sobh NA (2011) Parallel simulations of three-dimensional cracks using the generalized finite element method. Comput Mech 47(3):265–282. doi:10.​1007/​s00466-010-0546-5 MathSciNet CrossRef MATH
    35.Kim D-J, Duarte C, Proenca S (2012) A generalized finite element method with global-local enrichment functions for confined plasticity problems. Comput Mech: 1–16. doi:10.​1007/​s00466-012-0689-7 ISSN 0178-7675
    36.Kim J, Duarte CA (2015) A new generalized finite element method for two-scale simulations of propagating cohesive fractures in 3-D. Int J Numer Methods Eng 181:189–208
    37.Krause R, Rank E (2003) Multiscale computations with a combination of the h- and p-versions of the finite-element method. Comput Methods Appl Mech Eng 192:3959–3983CrossRef MATH
    38.Lee S-H, Song J-H, Yoon Y-C, Zi G, Belytschko T (2004) Combined extended and superimposed finite element method for cracks. Int J Numer Methods Eng 59:1119–1136. doi:10.​1002/​nme.​908 CrossRef MATH
    39.Li S, Mear ME, Xiao L (1998) Symmetric weak-form integral equation method for three-dimensional fracture analysis. Comput Methods Appl Mech Eng 151:435–459MathSciNet CrossRef MATH
    40.Loehnert S, Belytschko T (2007) A multiscale projection method for macro/microcrack simulations. Int J Numer Methods Eng 71(12):1466–1482MathSciNet CrossRef MATH
    41.Melenk JM (1995) On generalized finite element methods. PhD thesis, The University of Maryland
    42.Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314CrossRef MATH
    43.Oden JT, Duarte CA, Zienkiewicz OC (1998) A new cloud-based hp finite element method. Comput Methods Appl Mech Eng 153:117–126. doi:10.​1016/​S0045-7825(97)00039-X MathSciNet CrossRef MATH
    44.O’Hara P, Hollkamp J (2014) Modeling vibratory damage with reduced-order models and the generalized finite element method. J Sound Vib 333:6637–6650CrossRef
    45.O’Hara P, Duarte CA, Eason T (2009) Generalized finite element analysis of three-dimensional heat transfer problems exhibiting sharp thermal gradients. Comput Methods Appl Mech Eng 198(21–26):1857–1871. doi:10.​1016/​j.​cma.​2008.​12.​024 CrossRef MATH
    46.O’Hara P, Duarte CA, Eason T, Garzon J (2013) Efficient analysis of transient heat transfer problems exhibiting sharp thermal gradients. Comput Mech 51:743–764. doi:10.​1007/​s00466-012-0750-6 MathSciNet CrossRef MATH
    47.Oskay C (2011) A variational multiscale enrichment for modeling coupled mechano-diffusion problems. Int J Numer Methods Eng. doi:10.​1002/​nme.​3258
    48.Paris A, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Eng 85:528–534CrossRef
    49.Park K, Pereira JP, Duarte CA, Paulino GH (2009) Integration of singular enrichment functions in the generalized/extended finite element method for three-dimensional problems. Int J Numer Methods Eng 78(10):1220–1257. doi:10.​1002/​nme.​2530
    50.Pereira JP, Duarte CA (2005) Extraction of stress intensity factors from generalized finite element solutions. Eng Anal Bound Elem 29:397–413. doi:10.​1016/​j.​enganabound.​2004.​09.​007 CrossRef MATH
    51.Pereira JP, Duarte CA, Guoy D, Jiao X (2009) hp-Generalized FEM and crack surface representation for non-planar 3-D cracks. Int J Numer Methods Eng 77(5):601–633. doi:10.​1002/​nme.​2419 MathSciNet CrossRef MATH
    52.Pereira JP, Duarte CA, Jiao X (2010) Three-dimensional crack growth with hp-generalized finite element and face offsetting methods. Comput Mech 46(3):431–453. doi:10.​1007/​s00466-010-0491-3 MathSciNet CrossRef MATH
    53.Pereira JP, Kim D-J, Duarte CA (2012) A two-scale approach for the analysis of propagating three-dimensional fractures. Comput Mech 49(1):99–121. doi:10.​1007/​s00466-011-0631-4 MathSciNet CrossRef MATH
    54.Plews JA, Duarte CA (2014) Bridging multiple structural scales with a generalized finite element method. Int J Numer Methods Eng. doi:10.​1002/​nme.​4703
    55.Pustejovsky MA (1979) Fatigue crack propagation in titanium under general in-plane loading. I Experiments. Eng Fract Mech 11:9–15CrossRef
    56.Rank E, Krause R (1997) A multi-scale finite element method. Comput Struct 64(1–4):139–144CrossRef MATH
    57.Schöllmann M, Richard HA, Kullmer G, Fulland M (2002) A new criterion for the prediction of crack development in multiaxially loaded structures. Int J Fatigue 117:129–141
    58.Simone A, Duarte CA, van der Giessen E (2006) A generalized finite element method for polycrystals with discontinuous grain boundaries. Int J Numer Methods Eng 67(8):1122–1145. doi:10.​1002/​nme.​1658 CrossRef MATH
    59.Spievak LE, Wawrzynek PA, Ingraffea AR, Lewicki DG (2001) Simulating fatigue crack growth in spiral bevel gears. Eng Fract Mech 68:53–76CrossRef
    60.Strouboulis T, Copps K, Babuška I (2000) The generalized finite element method: an example of its implementation and illustration of its performance. Int J Numer Methods Eng 47(8):1401–1417CrossRef MATH
    61.Strouboulis T, Copps K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190:4081–4193CrossRef MATH
    62.Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Methods Eng 48(11):1549–1570CrossRef MATH
    63.Szabo BA, Babuška I (1988) Computation of the amplitude of stress singular terms for cracks and reentrant corners. In: Cruse TA (ed) Fracture mechanics: nineteenth symposium, ASTM STP 969, pp 101–124. Southwest Research Institute, San Antonio
    64.Tada H, Paris P, Irwin G (2000) The stress analysis of cracks handbook, 3rd edn. ASME Press, New YorkCrossRef
    65.Turner DZ, Nakshatrala KB, Hjelmstad KD (2011) A stabilized formulation for the advection-diffusion equation using the generalized finite element method. Int J Numer Methods Fluids 66:64–81MathSciNet CrossRef MATH
    66.Wawrzynek PA, Martha LF, Ingraffea AR (1988) A computational environment for the simulation of fracture processes in three-dimensions. In Rosakis AJ (ed) Analytical, numerical and experimental aspects of three dimensional fracture process, vol 91, pp 321–327. ASME AMD, ASME, New York
    67.Yosibash Z (2012) Singularities in elliptic boundary value problems and elasticity and their connection with failure initiation. Springer, New YorkCrossRef MATH
  • 作者单位:P. O’Hara (1)
    J. Hollkamp (3)
    C. A. Duarte (2)
    T. Eason (3)

    1. Universal Technology Corporation, 1270 North Fairfield Rd, Dayton, OH, 45432, USA
    3. Air Force Research Laboratory, Structural Sciences Center, WPAFB, Dayton, OH, 45433, USA
    2. Newmark Laboratory, Department of Civil and Environmental Engineering, University of Illinois, 205 North Mathews Avenue, Urbana, IL, 61801, USA
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Numerical and Computational Methods in Engineering
    Computational Science and Engineering
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0924
文摘
This paper presents a two-scale extension of the generalized finite element method (GFEM) which allows for static fracture analyses as well as fatigue crack propagation simulations on fixed, coarse hexahedral meshes. The approach is based on the use of specifically-tailored enrichment functions computed on-the-fly through the use of a fine-scale boundary value problem (BVP) defined in the neighborhood of existing mechanically-short cracks. The fine-scale BVP utilizes tetrahedral elements, and thus offers the potential for the use of a highly adapted fine-scale mesh in the regions of crack fronts capable of generating accurate enrichment functions for use in the coarse-scale hexahedral model. In this manner, automated \(\textit{hp}\)-adaptivity which can be used for accurate fracture analyses, is now available for use on coarse, uniform hexahedral meshes without the requirements of irregular meshes and constrained approximations. The two-scale GFEM approach is verified and compared against alternative approaches for static fracture analyses, as well as mixed-mode fatigue crack propagation simulations. The numerical examples demonstrate the ability of the proposed approach to deliver accurate results even in scenarios involving multiple discontinuities or sharp kinks within a single computational element. The proposed approach is also applied to a representative panel model similar in design and complexity to that which may be used in the aerospace community. Keywords Generalized finite elements Multi-scale methods Partition-of-unity methods Computational fracture mechanics hp-Methods

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700