Convergent neuromodulation onto a network neuron can have divergent effects at the network level
详细信息    查看全文
  • 作者:Nickolas Kintos ; Michael P. Nusbaum ; Farzan Nadim
  • 关键词:Neuromodulation ; Central pattern generator ; Phase plane analysis ; Mathematical modeling ; Stomatogastric ganglion
  • 刊名:Journal of Computational Neuroscience
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:40
  • 期:2
  • 页码:113-135
  • 全文大小:3,016 KB
  • 参考文献:Akay, T., Wood, D., & Nusbaum, M. P. (2004). Reciprocal inhibition is not necessary for generation of all gastric mill rhythms. In SfN 34th Annual Meeting. San Diego, CA.
    Ambrosio-Mouser, C., Nadim, F., & Bose, A. (2006). The effects of varying the timing of inputs on a neuronal oscillator. SIAM Journal on Applied Dynamical Systems, 5, 108–139.CrossRef PubMed PubMedCentral
    Bacci, A., Huguenard, J. R., & Prince, D. A. (2005). Modulation of neocortical interneurons: extrinsic influences and exercises in self-control. Trends in Neurosciences, 28, 602–610.CrossRef PubMed
    Bartos, M., & Nusbaum, M. P. (1997). Intercircuit control of motor pattern modulation by presynaptic inhibition. Journal of Neuroscience, 17, 2247–2256.PubMed
    Bartos, M., Manor, Y., Nadim, F., Marder, E., & Nusbaum, M. P. (1999). Coordination of fast and slow rhythmic neuronal circuits. Journal of Neuroscience, 19, 6650–6660.PubMed
    Beenhakker, M. P., DeLong, N. D., Saideman, S. R., Nadim, F., & Nusbaum, M. P. (2005). Proprioceptor regulation of motor circuit activity by presynaptic inhibition of a modulatory projection neuron. Journal of Neuroscience, 25, 8794–8806.CrossRef PubMed
    Blitz, D. M., & Nusbaum, M. P. (2008). State-dependent presynaptic inhibition regulates central pattern generator feedback to descending inputs. Journal of Neuroscience, 28, 9564–9574.CrossRef PubMed PubMedCentral
    Blitz, D. M., Christie, A. E., Coleman, M. J., Norris, B. J., Marder, E. & Nusbaum, M. P. (1999). Different proctolin neurons elicit distinct motor patterns from a multifunctional neuronal network. Journal of Neuroscience, 19, 5449–5463.
    Briggman, K. L., & Kristan, W. B. (2008). Multifunctional pattern-generating circuits. Annual Review of Neuroscience, 31, 271–294.CrossRef PubMed
    Calabrese, R. L. (1999). Taking the lead from a model. Current Biology, 9, R680–R683.CrossRef PubMed
    Calabrese, R. L., Norris, B. J., Wenning, A., & Wright, T. M. (2011). Coping with variability in small neuronal networks. Integrative and Comparative Biology, 51, 845–855.CrossRef PubMed PubMedCentral
    Christie, A. E., Stemmler, E. A., & Dickinson, P. S. (2010). Crustacean neuropeptides. Cellular and Molecular Life Sciences, 67, 4135–4169.CrossRef PubMed
    Coleman, M. J., Meyrand, P., & Nusbaum, M. P. (1995). A switch between two modes of synaptic transmission mediated by presynaptic inhibition. Nature, 378, 502–505.CrossRef PubMed
    DeLong, N. D., Beenhakker, M. P., & Nusbaum, M. P. (2009a). Presynaptic inhibition selectively weakens peptidergic cotransmission in a small motor system. Journal of Neurophysiology, 102, 3492–3504.CrossRef PubMed PubMedCentral
    DeLong, N. D., Kirby, M. S., Blitz, D. M., & Nusbaum, M. P. (2009b). Parallel regulation of a modulator-activated current via distinct dynamics underlies comodulation of motor circuit output. Journal of Neuroscience, 29, 12355–12367.CrossRef PubMed PubMedCentral
    Derjean, D., Moussaddy, A., Atallah, E., St-Pierre, M., Auclair, F., Chang, S., Ren, X., Zielinski, B., & Dubuc, R. (2010). A novel neural substrate for the transformation of olfactory inputs into motor output. PLoS Biology, 8, e1000567.CrossRef PubMed PubMedCentral
    Di Prisco, G. V., Pearlstein, E., Le Ray, D., Robitaille, R., & Dubuc, R. (2000). A cellular mechanism for the transformation of a sensory input into a motor command. Journal of Neuroscience, 20, 8169–8176.PubMed
    Dickinson, P. S. (2006). Neuromodulation of central pattern generators in invertebrates and vertebrates. Current Opinion in Neurobiology, 16, 604–614.CrossRef PubMed
    Diehl, F., White, R. S., Stein, W., & Nusbaum, M. P. (2013). Motor circuit-specific burst patterns drive different muscle and behavior patterns. Journal of Neuroscience, 33, 12013–12029.CrossRef PubMed PubMedCentral
    Doi, A., & Ramirez, J. M. (2008). Neuromodulation and the orchestration of the respiratory rhythm. Respiratory Physiology & Neurobiology, 164, 96–104.CrossRef
    Dzirasa, K., Ribeiro, S., Costa, R., Santos, L. M., Lin, S. C., Grosmark, A., Sotnikova, T. D., Gainetdinov, R. R., Caron, M. G., & Nicolelis, M. A. (2006). Dopaminergic control of sleep-wake states. Journal of Neuroscience, 26, 10577–10589.CrossRef PubMed
    Ermentrout, G. B. (2002). Simulating, analyzing, and animating dynamical systems: A guide to Xppaut for researchers and students (software, environments, tools). Philadelphia: SIAM.CrossRef
    Grillner, S. (2006). Biological pattern generation: the cellular and computational logic of networks in motion. Neuron, 52, 751–766.CrossRef PubMed
    Harris-Warrick, R. M. (2011). Neuromodulation and flexibility in Central Pattern Generator networks. Current Opinion in Neurobiology, 21, 685–692.CrossRef PubMed PubMedCentral
    Hawkins, V. E., Hawryluk, J. M., Takakura, A. C., Tzingounis, A. V., Moreira, T. S., & Mulkey, D. K. (2015). HCN channels contribute to serotonergic modulation of ventral surface chemosensitive neurons and respiratory activity. Journal of Neurophysiology, 113, 1195–1205.CrossRef PubMed PubMedCentral
    Kintos, N., & Nadim, F. (2014). A modeling exploration of how synaptic feedback to descending projection neurons shapes the activity of an oscillatory network. SIAM J Applied Dynamical Systems, 13, 1239–1269.CrossRef
    Kintos, N., Nusbaum, M. P., & Nadim, F. (2008). A modeling comparison of projection neuron- and neuromodulator-elicited oscillations in a central pattern generating network. Journal of Computational Neuroscience, 24, 374–397.CrossRef PubMed PubMedCentral
    Kirby, M. S., & Nusbaum, M. P. (2007). Peptide hormone modulation of a neuronally modulated motor circuit. Journal of Neurophysiology, 98, 3206–3220.CrossRef PubMed
    LeBeau, F. E., El Manira, A., & Griller, S. (2005). Tuning the network: modulation of neuronal microcircuits in the spinal cord and hippocampus. Trends in Neurosciences, 28, 552–561.CrossRef PubMed
    Lieske, S. P., & Ramirez, J. M. (2006). Pattern-specific synaptic mechanisms in a multifunctional network. II. Intrinsic modulation by metabotropic glutamate receptors. Journal of Neurophysiology, 95, 1334–1344.CrossRef PubMed
    Lieske, S. P., Thoby-Brisson, M., Telgkamp, P., & Ramirez, J. M. (2000). Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps [see comment]. Nature Neuroscience, 3, 600–607.CrossRef PubMed
    Manor, Y., Nadim, F., Abbott, L. F., & Marder, E. (1997). Temporal dynamics of graded synaptic transmission in the lobster stomatogastric ganglion. Journal of Neuroscience, 17, 5610–5621.PubMed
    Manor, Y., Nadim, F., Epstein, S., Ritt, J., Marder, E., & Kopell, N. (1999). Network oscillations generated by balancing graded asymmetric reciprocal inhibition in passive neurons. Journal of Neuroscience, 19, 2765–2779.PubMed
    Marder, E. (2012). Neuromodulation of neuronal circuits: back to the future. Neuron, 76, 1–11.CrossRef PubMed PubMedCentral
    Marder, E., & Bucher, D. (2007). Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annual Review of Physiology, 69, 291–316.CrossRef PubMed
    Marder, E., & Thirumalai, V. (2002). Cellular, synaptic and network effects of neuromodulation. Neural Networks, 15, 479–493.CrossRef PubMed
    McCormick, D. A., & Pape, H. C. (1990). Noradrenergic and serotonergic modulation of a hyperpolarization-activated cation current in thalamic relay neurones. Journal of Physiology, 431, 319–342.CrossRef PubMed PubMedCentral
    Mishchenko, E. F., & Rozov, N. K. (1980). Differential equations with small parameters and relaxation oscillators. New York: Plenum Press.CrossRef
    Morgan, P. T., Perrins, R., Lloyd, P. E., & Weiss, K. R. (2000). Intrinsic and extrinsic modulation of a single central pattern generating circuit. Journal of Neurophysiology, 84, 1186–1193.PubMed
    Nadim, F., & Bucher, D. (2014). Neuromodulation of neurons and synapses. Current Opinion in Neurobiology, 29C, 48–56.CrossRef
    Nadim, F., Manor, Y., Nusbaum, M. P., & Marder, E. (1998). Frequency regulation of a slow rhythm by a fast periodic input. Journal of Neuroscience, 18, 5053–5067.PubMed
    Nassel, D. R. (2009). Neuropeptide signaling near and far: how localized and timed is the action of neuropeptides in brain circuits? Invertebrate Neuroscience, 9, 57–75.CrossRef PubMed
    Nusbaum, M. P. (2002). Regulating peptidergic modulation of rhythmically active neural circuits. Brain, Behavior and Evolution, 60, 378–387.CrossRef PubMed
    Nusbaum, M. P., & Beenhakker, M. P. (2002). A small-systems approach to motor pattern generation. Nature, 417, 343–350.CrossRef PubMed
    Nusbaum, M. P., & Blitz, D. M. (2012). Neuropeptide modulation of microcircuits. Current Opinion in Neurobiology, 22, 592–601.CrossRef PubMed PubMedCentral
    Nusbaum, M. P., Blitz, D. M., Swensen, A. M., Wood, D., & Marder, E. (2001). The roles of co-transmission in neural network modulation. Trends in Neurosciences, 24, 146–154.CrossRef PubMed
    Peck, J. H., Gaier, E., Stevens, E., Repicky, S., & Harris-Warrick, R. M. (2006). Amine modulation of Ih in a small neural network. Journal of Neurophysiology, 96, 2931–2940.CrossRef PubMed
    Raper, J. A. (1979). Nonimpulse-mediated synaptic transmission during the generation of a cyclic motor program. Science, 205, 304–306.CrossRef PubMed
    Rauscent, A., Einum, J., Le Ray, D., Simmers, J., & Combes, D. (2009). Opposing aminergic modulation of distinct spinal locomotor circuits and their functional coupling during amphibian metamorphosis. Journal of Neuroscience, 29, 1163–1174.CrossRef PubMed
    Rodriguez, J. C., Blitz, D. M., & Nusbaum, M. P. (2013). Convergent rhythm generation from divergent cellular mechanisms. Journal of Neuroscience, 33, 18047–18064.CrossRef PubMed PubMedCentral
    Saideman, S. R., Blitz, D. M., & Nusbaum, M. P. (2007). Convergent motor patterns from divergent circuits. Journal of Neuroscience, 27, 6664–6674.CrossRef PubMed
    Skiebe, P. (2001). Neuropeptides are ubiquitous chemical mediators: using the stomatogastric nervous system as a model system. Journal of Experimental Biology, 204, 2035–2048.PubMed
    Stein, W., DeLong, N. D., Wood, D. E., & Nusbaum, M. P. (2007). Divergent co-transmitter actions underlie motor pattern activation by a modulatory projection neuron. European Journal of Neuroscience, 26, 1148–1165.CrossRef PubMed
    Swensen, A. M., & Marder, E. (2000). Multiple peptides converge to activate the same voltage-dependent current in a central pattern-generating circuit. Journal of Neuroscience, 20, 6752–6759.PubMed
    Swensen, A. M., & Marder, E. (2001). Modulators with convergent cellular actions elicit distinct circuit outputs. Journal of Neuroscience, 21, 4050–4058.PubMed
    White, R. S., & Nusbaum, M. P. (2011). The same core rhythm generator underlies different rhythmic motor patterns. Journal of Neuroscience, 31, 11484–11494.CrossRef PubMed PubMedCentral
    Wood, D. E., Stein, W., & Nusbaum, M. P. (2000). Projection neurons with shared cotransmitters elicit different motor patterns from the same neural circuit. Journal of Neuroscience, 20, 8943–8953.PubMed
    Yarger, A. M., & Stein, W. (2015). Sources and range of long-term variability of rhthmic motor patterns in vivo. Journal of Experimental Biology, 24, 3950–3961.
    Zhao, S., Sheibanie, A. F., Oh, M., Rabbah, P., & Nadim, F. (2011). Peptide neuromodulation of synaptic dynamics in an oscillatory network. Journal of Neuroscience, 31, 13991–14004.CrossRef PubMed PubMedCentral
  • 作者单位:Nickolas Kintos (1)
    Michael P. Nusbaum (2)
    Farzan Nadim (3)

    1. Department of Mathematics, Saint Peter’s University, Jersey City, NJ, 07306, USA
    2. Department of Neuroscience, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
    3. Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, 323 Martin Luther King Blvd., Newark, NJ, 07102, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Neurology
    Human Genetics
    Theory of Computation
  • 出版者:Springer Netherlands
  • ISSN:1573-6873
文摘
Different neuromodulators often target the same ion channel. When such modulators act on different neuron types, this convergent action can enable a rhythmic network to produce distinct outputs. Less clear are the functional consequences when two neuromodulators influence the same ion channel in the same neuron. We examine the consequences of this seeming redundancy using a mathematical model of the crab gastric mill (chewing) network. This network is activated in vitro by the projection neuron MCN1, which elicits a half-center bursting oscillation between the reciprocally-inhibitory neurons LG and Int1. We focus on two neuropeptides which modulate this network, including a MCN1 neurotransmitter and the hormone crustacean cardioactive peptide (CCAP). Both activate the same voltage-gated current (I MI ) in the LG neuron. However, I MI-MCN1 , resulting from MCN1 released neuropeptide, has phasic dynamics in its maximal conductance due to LG presynaptic inhibition of MCN1, while I MI-CCAP retains the same maximal conductance in both phases of the gastric mill rhythm. Separation of time scales allows us to produce a 2D model from which phase plane analysis shows that, as in the biological system, I MI-MCN1 and I MI-CCAP primarily influence the durations of opposing phases of this rhythm. Furthermore, I MI-MCN1 influences the rhythmic output in a manner similar to the Int1-to-LG synapse, whereas I MI-CCAP has an influence similar to the LG-to-Int1 synapse. These results show that distinct neuromodulators which target the same voltage-gated ion channel in the same network neuron can nevertheless produce distinct effects at the network level, providing divergent neuromodulator actions on network activity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700