Japanese chum salmon stock enhancement: current perspective and future challenges
详细信息    查看全文
  • 作者:Shuichi Kitada (1)
  • 关键词:Integrated hatchery program ; Escapement ; Effective population size ; Genetic diversity ; Population structure
  • 刊名:Fisheries Science
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:80
  • 期:2
  • 页码:237-249
  • 全文大小:1,556 KB
  • 参考文献:1. Kaeriyama M (1999) Hatchery programmes and stock management of salmonid populations in Japan. In: Howell BR, Moksness E, Sv?sand T (eds) Stock enhancement and sea ranching. Blackwell, Oxford, pp 153-67
    2. Miyakoshi Y, Nagata M, Kitada S, Kaeriyama M (2013) Historical and current hatchery programs and management of chum salmon in Hokkaido, northern Japan. Rev Fish Sci 21:469-79 CrossRef
    3. Beamish RJ, Bouillon DR (1993) Pacific salmon production trends in relation to climate. Can J Fish Aquat Sci 50:1002-016 CrossRef
    4. Kaeriyama M, Seo H, Kudo H (2009) Trends in run size and carrying capacity of Pacific salmon in the North Pacific Ocean. N Pac Anadr Fish Comm Bull 5:293-02
    5. Morita K, Saito T, Miyakoshi Y, Fukuwaka M, Nagasawa T, Kaeriyama M (2006) A review of Pacific salmon hatchery programmes on Hokkaido Island, Japan. ICES J Mar Sci 63:1353-363 CrossRef
    6. Miyakoshi Y, Urave H, Saneyoshi H, Aoyama T, Sakamoto H, Ando D, Kasugai K, Mishima Y, Takada M, Nagata M (2012) The occurrence and run timing of naturally spawning chum in northern Japan. Environ Biol Fish 94:197-06 CrossRef
    7. Hilborn R (1992) Hatcheries and the future of salmon in the northwest. Fisheries 17:5- CrossRef
    8. Waples RS (1999) Dispelling some myths about hatcheries. Fisheries 24:12-1 CrossRef
    9. Brannon EL, Amend DF, Cronin MA, Lannan JE, LaPatra S, McNeil WJ, Noble RE, Smith CE, Talbot AJ, Wedemeyer GA, Westers H (2004) The controversy about salmon hatcheries. Fisheries 29:12-1 CrossRef
    10. Mobrand L, Barr J, Blankenship HL, Campton DE, Evelyn TTP, Flagg TA, Mahnken CVW, Seeb LW, Seidel RR, Smoker WW (2005) Hatchery reform in Washington state: principles and emerging issues. Fisheries 30:11-3 CrossRef
    11. Waples RS, Drake J (2004) Risk/benefit considerations for marine stock enhancement: a Pacific salmon perspective. In: Leber KM, Kitada S, Sv?sand T, Blankenship HL (eds) Stock enhancement and sea ranching, 2nd edn. Blackwell, Oxford, pp 260-06 CrossRef
    12. Kaeriyama M, Edpalina RR (2004) Evaluation of the biological interaction between wild and hatchery population for sustainable fisheries management of Pacific salmon. In: Leber KM, Kitada S, Sv?sand T, Blankenship HL (eds) Stock enhancement and sea ranching, 2nd edn. Blackwell, Oxford, pp 247-59
    13. Kaeriyama M, Seo H, Kudo H, Nagata M (2012) Perspectives on wild and hatchery salmon interactions at sea, potential climate effects of Japanese chum salmon at the need for sustainable salmon fisheries management reform in Japan. Environ Biol Fish 94:165-77 CrossRef
    14. Nagata M, Miyakoshi Y, Urabe H, Fujiwara M, Sasaki Y, Kasugai K, Torao M, Ando D, Kaeriyama M (2012) An overview of salmon enhancement and the need to manage and monitor natural spawning in Hokkaido, Japan. Environ Biol Fish 94:311-23 CrossRef
    15. Kitada S, Kishino H (2006) Lessons learned from Japanese marine finfish stock enhancement programmes. Fish Res 80:101-12 CrossRef
    16. Kitada S, Shishidou H, Sugaya T, Kitakado T, Hamasaki K, Kishino H (2009) Genetic effects of the long-term stock enhancement programs. Aquaculture 290:69-9 CrossRef
    17. Nakajima K, Kitada S, Habara Y, Sano S, Yokoyama E, Sugaya T, Iwamoto A, Kishino H, Hamasaki K (2014) Genetic effects of marine stock enhancement: a case study based on the highly piscivorous Japanese Spanish mackerel. Can J Fish Aquat Sci. doi:10.1139/cjfas-2013-0418.21
    18. Morita K, Takahashi S, Ohkuma K, Nagasawa T (2013) Estimation of the proportion of wild chum salmon / Oncorhynchus keta in Japanese hatchery rivers (in Japanese with English abstract). Nippon Suisan Gakkaishi 79:206-13 CrossRef
    19. Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95-07 CrossRef
    20. Hedgecock D (1994) Does variance in reproductive success limit effective population sizes of marine organisms? In: Beaumont AR (ed) Genetics and evolution of aquatic organisms. Chapman and Hall, London, pp 122-34
    21. Grant WS, Waples RS (2000) Spatial and temporal scales of genetic variability in marine and anadromous species: implications for fisheries oceanography. In: Harrison PJ, Parsons TR (eds) Fisheries oceanography. Blackwell Science, Cambridge, pp 61-3
    22. Hutchinson WF, van Oosterhout C, Rogers SI, Carvalho GR (2003) Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod ( / Gadus morhua). Proc Royal Soc B-Biol Sci 270:2125-132 CrossRef
    23. Hauser L, Adcock GJ, Smith PJ, Bernal Ramirez JH, Carvalho GR (2002) Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper ( / Pagrus auratus). Proc Natl Acad Sci USA 99:11742-1747 CrossRef
    24. Turner TF, Wares JP, Gold JR (2002) Genetic effective size is three orders of magnitude smaller than adult census size in an abundant, estuarine-dependant marine fish ( / Sciaenops ocellatus). Genetics 162:1329-339
    25. Cushing DH (1995) Population production and regulation in the sea: a fisheries perspective. Cambridge University Press, Cambridge
    26. Bartley D, Bagley M, Gall G, Bently B (1992) Use of linkage disequilibrium data to estimate effective size of hatchery and natural fish populations. Cons Biol 6:365-75 CrossRef
    27. Allendorf FW, Bayles D, Bottom D, Currens KP, Frissell CA, Hankin D, Lichatowich JA, Nehlsen W, Trotter PC, Williams TH (1997) Prioritizing Pacific salmon stocks for conservation. Cons Biol 11:140-52 CrossRef
    28. Schwartz MK, Luikart G, Waples RS (2006) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25-3 CrossRef
    29. Sato S, Kojima H, Ando J, Ando H, Wilmot RL, Seeb LW, Efremov V, LeClair L, Buchholz W, Jin DH, Urawa S, Kaeriyama M, Urano A, Abe S (2004) Genetic population structure of chum salmon in the Pacific Rim inferred from mitochondrial DNA sequence variation. Environ Biol Fish 69:37-0 CrossRef
    30. Beacham TD, Sato S, Urawa S, Lei KD, Wetklo M (2008) Population structure and stock identification of chum salmon / Oncorhynchus keta from Japan determined by microsatellite DNA variation. Fish Sci 74:983-94 CrossRef
    31. Seeb LW, Templin WD, Sato S, Abe S, Warheit K, Park JY, Seeb JE (2011) Single nucleotide polymorphisms across a species-range: implications for conservation studies of Pacific salmon. Molec Ecol Res 11(Suppl 1):195-17 CrossRef
    32. Yokotani R, Azuma N, Kudo H, Abe S, Kaeriyama M (2009) Genetic differentiation between early- and late-run populations of chum salmon ( / Oncorhynchus keta) naturally spawned in the Yurappu River inferred from mitochondrial DNA analysis. Fish Genet Breed Sci 39:1-
    33. Sato S, Ando J, Ando H, Urawa S, Urano A, Abe S (2001) Genetic variation among Japanese populations of chum salmon inferred from the nucleotide sequences of the mitochondrial DNA control region. Zool Sci 18:99-06 CrossRef
    34. Kitada S, Kitakado T, Kishino H (2007) Empirical Bayes inference of / F ST and its distribution in the genome. Genetics 177:861-73 CrossRef
    35. Quinn TP (2005) The behavior and ecology of Pacific salmon and trout. University of Washington Press, Seattle
    36. Westley PAH, Quinn TP, Dittman AH (2013) Rates of straying by hatchery-produced Pacific salmon ( / Oncorhynchus spp.) and steelhead ( / Oncorhynchus / mykiss) differ among species, life history types, and populations. Can J Fish Aquat Sci 70:735-46 CrossRef
    37. Kitanishi S, Yamamoto Y, Edo K, Higashi S (2012) Influences of habitat fragmentation by damming on the genetic structure of masu salmon populations in Hokkaido, Japan. Conserv Genet 13:1017-026 CrossRef
    38. Fleming I, Hindar K, Mj?lner?d IB, Jonsson B, Balstad T, Lamberg A (2000) Lifetime success and interactions of farm salmon invading a native population. Proc R Soc Lond B 267:1517-523 CrossRef
    39. McGinnity P, Prod?hl P, Ferguson A, Hynes R, ó Maoiléidigh N, Baker N, Cotter D, O’Hea B, Cooke D, Rogan G, Taggart J, Cross T (2003) Fitness reduction and potential extinction of wild populations of Atlantic salmon / Salmo salar as a result of interactions with escaped farm salmon. Proc R Soc Lond B 270:2443-450 CrossRef
    40. Araki H, Cooper B, Blouin MS (2007) Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318:100-03 CrossRef
    41. Berntson EA, Carmichael RW, Flesher MW, Ward EJ, Moran P (2011) Diminished reproductive success of steelhead from a hatchery supplementation program (Little Sheep Creek, Imnaha Basin, Oregon). Trans Am Fish Soc 140:685-98 CrossRef
    42. Christie MR, Marine ML, French RA, Blouin MS (2012) Genetic adaptation to captivity can occur in a single generation. PNAS 109:238-42 CrossRef
    43. Thérault V, Moyer G, Jackson LS, Blouin MS, Banks MA (2011) Reduced reproductive success of hatchery coho salmon in the wild: insights into most likely mechanisms. Molec Ecol 20:1860-869 CrossRef
    44. Anderson JH, Faulds PL, Atlas WI, Quinn TP (2013) Reproductive success of captively bred and naturally spawned Chinook salmon colonizing newly accessible habitat. Evol Appl 6:165-79 CrossRef
    45. Kitada S, Kishino H, Hamasaki K (2011) Bias and significance of relative reproductive success estimates based on steelhead trout ( / Oncorhynchus mykiss) data: a Bayesian metaanalysis. Can J Fish Aquat Sci 68:1827-835 CrossRef
    46. Araki H, Ardren WR, Olsen E, Cooper B, Blouin MS (2007) Reproductive success of captive-bred steelhead trout in the wild: evaluation of three hatchery programs in the Hood River. Conserv Biol 21:181-90 CrossRef
    47. Dannewitz J, Petersson E, Dahl J, Prestegaard T, L?f AC, J?rvi T (2004) Reproductive success of hatchery-produced and wild-born brown trout in an experimental stream. J Appl Ecol 41(2):355-64 CrossRef
    48. Ford MJ, Fuss H, Boelts B, LaHood E, Hard J, Miller J (2006) Changes in run timing and natural smolt production in a naturally spawning coho salmon ( / Oncorhynchus kisutch) population after 60?years of intensive hatchery supplementation. Can J Fish Aquat Sci 63:2343-355 CrossRef
    49. Chilcote MW, Goodson KW, Falcy MR (2011) Reduced recruitment performance in natural populations of anadromous salmonids associated with hatchery-reared fish. Can J Fish Aquat Sci 68:511-22 CrossRef
    50. Araki H, Cooper B, Blouin MS (2009) Carry-over effect of captive breeding reduces reproductive fitness of wild-born descendants in the wild. Biol Lett 5:621-24 CrossRef
    51. Araki H, Berejikian BA, Ford MJ, Blouin MS (2008) Fitness of hatchery-reared salmonids in the wild. Evol Appl 1:342-55 CrossRef
    52. Bj?rnsson BT, Stefansson SO, McCormick SD (2011) Environmental endocrinology of salmon smoltification. Gen Comp Endocrinol 170:290-98 CrossRef
    53. Roberge C, Normandeau E, Einum S, Guderley H, Bernatchez L (2008) Genetic consequences of interbreeding between farmed and wild Atlantic salmon: insights from the transcriptome. Mol Ecol 17:314-24 CrossRef
    54. Devlin RH, Sakhrani D, Tymchuk WE, Rise ML, Goh B (2009) Domestication and growth hormone transgenesis cause similar changes in gene expression in coho salmon ( / Oncorhynchus kisutch). Proc Natl Acad Sci USA 106(9):3047-052 CrossRef
    55. Moreau DTR, Conway C, Fleming IA (2011) Reproductive performance of alternative male phenotypes of growth hormone transgenic Atlantic salmon ( / Salmo salar). Evol Appl 4:736-48 CrossRef
    56. Berejikian BA, Larsen DA, Swanson P, Moore ME, Tatara CP, Gale WL, Pasley CR, Beckman BR (2012) Development of natural growth regimes for hatchery-reared steelhead to reduce residualism, fitness loss, and negative ecological interactions. Environ Biol Fish 94:29-4 CrossRef
    57. Nakamichi R, Kishino H, Kitada S (2013) A novel method to identify key factors of the gene regulatory network behind salmonids reproductive behavior using directed graphical modeling. N Pac Anadr Fish Comm Tec Rep 9:50-3
    58. Berejikian BA, Van Doornik DM, Scheurer JA, Bush R (2009) Reproductive behavior and relative reproductive success of natural- and hatchery-origin Hood Canal summer chum salmon ( / Oncorhynchus keta). Can J Fish Aquat Sci 66:781-89 CrossRef
    59. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Molec Ecol 7:639-55 CrossRef
    60. Mizuno S, Nakajima M, Naito K, Koyama T, Saneyoshi H, Kobayashi M, Koide N, Ueda H (2010) Physiological impacts of high rearing density on chum salmon / Oncorhynchus keta fry. Aquaculture Sci 58:387-99
    61. Heard WR (2012) Overview of salmon stock enhancement in southeast Alaska and compatibility with maintenance of hatchery and wild stocks. Environ Biol Fish 94:273-83 CrossRef
  • 作者单位:Shuichi Kitada (1)

    1. Graduate School of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
  • ISSN:1444-2906
文摘
This study reviews the present status of the Japanese chum salmon Oncorhynchus keta stock enhancement program and considers the ecological sustainability of wild populations while providing fishery production, exemplified by the hatchery-based Kitami region set net fishery. The return rate and the number of returns have been historically high in the Sea of Okhotsk, but have decreased in other regions since 2005. Natural spawning of chum salmon occurred in at least 160 rivers in Hokkaido. The genetic diversity of Japanese chum salmon was similar to or higher than that of other Pacific Rim populations. Numbers of alleles were high at microsatellite loci, but the loss of rare haplotypes was observed in all populations. The estimated N e /N ratio for the Kitami region was >0.15?% including hatchery and wild fish under the present high fishing pressure. Four regional populations were inferred in Hokkaido, however, genetic differentiation was weak and some river-populations were nested. Substantial changes in run timing were observed, but it has recovered gradually owing to the recent practice of escapement. Our analyses highlight the importance of juvenile quality and the vital roles of escapements in enhanced and non-enhanced rivers. New research is needed to minimize the genetic risks associated with hatchery programs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700