Sensing deep extreme environments: the receptor cell types, brain centers, and multi-layer neural packaging of hydrothermal vent endemic worms
详细信息    查看全文
  • 作者:Shuichi Shigeno (1)
    Atsushi Ogura (2)
    Tsukasa Mori (3)
    Haruhiko Toyohara (4)
    Takao Yoshida (1)
    Shinji Tsuchida (1)
    Katsunori Fujikura (1)

    1. Department for Marine Biodiversity Research
    ; Japan Agency for Marine-Earth Science and Technology ; 2-15 Natsushima-cho ; Yokosuka ; 237-0061 ; Kanagawa ; Japan
    2. Nagahama Institute of Bio-Science and Technology
    ; Institute of Bio-Science and Technology ; 1266 Tamura-Cho ; Nagahama ; 526-0829 ; Shiga ; Japan
    3. Nihon University
    ; 1866 Kameino ; Fujisawa ; 252-0880 ; Kanagawa ; Japan
    4. Division of Applied Biosciences
    ; Kyoto University ; Graduate School of Agriculture ; Laboratory of Marine Biological Function ; Kitashirakawa Oiwake-cho ; Sakyo-ku ; Kyoto ; 606-8602 ; Japan
  • 关键词:Deep ; sea ; Sensory cells ; Brain ; Nervous system ; Glia ; Annelids ; Evolution
  • 刊名:Frontiers in Zoology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:11
  • 期:1
  • 全文大小:14,869 KB
  • 参考文献:1. Desbruyeres, D, Laubier, L (1991) Systematics, phylogeny, ecology and distribution of the Alvinellidae (Polychaeta) from deep-sea hydrothermal vents. Ophelia 5: pp. 31-45
    2. Desbruyeres, D, Chevaldonne, P, Alayse, AM, Jollivet, D, Lallier, FH, Jouin-Toulmond, C, Zal, F, Sarradin, PM, Cosson, R, Caprais, JC, Arndt, C, O鈥橞rien, J, Guezennec, J, Hourdez, S, Riso, R, Gaill, F, Laubier, L, Toulmond, A (1998) Biology and ecology of the 鈥淧ompeii worm鈥?(Alvinella pompejana Desbruyeres and Laubier), a normal dweller of an extreme deep-sea environment: a synthesis of current knowledge and recent developments. Deep-Sea Res Part I 45: pp. 383-422 CrossRef
    3. Luther, GW, Rozan, TF, Taillefert, M, Nuzzio, DB, Meo, C, Shank, TM, Lutz, RA, Cary, SC (2001) Chemical speciation drives hydrothermal vent ecology. Nature 410: pp. 813-816 CrossRef
    4. Mary, J, Rogniaux, H, Rees, JF, Zal, F (2010) Response of Alvinella pompejana to variable oxygen stress: a proteomic approach. Proteomics 10: pp. 2250-2258 CrossRef
    5. Chevaldonne, P, Fisher, CR, Childress, JJ, Desbruyeres, D, Jollivet, D, Zal, F, Toulmond, A (2000) Thermotolerance and the 鈥減ompeii worms鈥? Mar Ecol Prog Ser 208: pp. 293-295 CrossRef
    6. Bris, N, Gaill, F (2007) How does the annelid Alvinella pompejana deal with an extreme hydrothermal environment. Rev Environ Sci Biotechnol 6: pp. 197-221 CrossRef
    7. Ravaux, J, Hamel, G, Zbinden, M, Tasiemski, AA, Boutet, I, Leger, N, Tanguy, A, Jollivet, D, Shillito, B (2013) Thermal limit for metazoan life in question: in vivo heat tolerance of the Pompeii worm. PLoS One 8: pp. 64074 CrossRef
    8. Genard, B, Marie, B, Loumaye, E, Knoops, B, Legendre, P, Zal, F, Rees, JF (2013) Living in a hot redox soup: antioxidant defences of the hydrothermal worm Alvinella pompejana. Aqua Biol 18: pp. 217-228 CrossRef
    9. Gaill, F, Bouligand, Y (1987) Supercoil of collagen fibrils in the integument of Alvinella, an abyssal annelid. Tissue Cell 19: pp. 625-642 CrossRef
    10. Toulmond, A, Slitine, FE, Defrescheville, J, Jouin, C (1990) Extracellular hemoglobins of hydrothermal vent annelids: structural and functional characteristics in three alvinellid species. Biol Bull 179: pp. 366-373 CrossRef
    11. Sicot, FX, Mesnage, M, Masselot, M, Exposito, JY, Garrone, R, Deutsch, J, Gaill, F (2000) Molecular adaptation to an extreme environment: origin of the thermal stability of the pompeii worm collagen. J Mol Biol 302: pp. 811-820 CrossRef
    12. Marie, B, Genard, B, Rees, JF, Zal, F (2006) Effect of ambient oxygen concentration on activities of enzymatic antioxidant defences and aerobic metabolism in the hydrothermal vent worm, Paralvinella grasslei. Mar Biol 150: pp. 273-284 CrossRef
    13. Shin, DS, Didonato, M, Barondeau, DP, Hura, GL, Hitomi, C, Berglund, JA, Getzoff, ED, Cary, SC, Tainer, JA (2009) Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana: structures, stability, mechanism, and insights into amyotrophic lateral sclerosis. J Mol Biol 385: pp. 1534-1555 CrossRef
    14. Gagniere, N, Jollivet, D, Boutet, I, Brelivet, Y, Busso, D, Silva, C, Gaill, F, Higuet, D, Hourdez, S, Knoops, B, Lallier, F, Leize-Wagner, E, Mary, J, Moras, D, Perrodou, E, Rees, JF, Segurens, B, Shillito, B, Tanguy, A, Thierry, JC, Weissenbach, J, Wincker, P, Zal, F, Poch, O, Lecompte, O (2010) Insights into metazoan evolution from Alvinella pompejana cDNAs. BMC Genomics 11: pp. 634 CrossRef
    15. Dilly, GF, Young, CR, Lane, WS, Pangilinan, J, Girguis, PR (2012) Exploring the limit of metazoan thermal tolerance via comparative proteomics: thermally induced changes in protein abundance by two hydrothermal vent polychaetes. Proc R Soc B 279: pp. 3347-3356 CrossRef
    16. Holder, T, Basquin, C, Ebert, J, Randel, N, Jollivet, D, Conti, E, J茅kely, G, Bono, F (2013) Deep transcriptome-sequencing and proteome analysis of the hydrothermal vent annelid Alvinella pompejana identifies the CvP-bias as a robust measure of eukaryotic thermostability. Biol Direct 8: pp. 2 CrossRef
    17. Rittschof, D, Forward, RB, Cannon, G, Welch, JM, McClary, M, Holm, ER, Clare, AS, Conova, S, McKelvey, LM, Bryan, P, Dover, CL (1998) Cues and context: larval responses to physical and chemical cues. Biofouling 12: pp. 31-44 CrossRef
    18. Dover, CL, Szuts, EZ, Chamberlain, SC, Cann, JR (1989) A novel eye in 鈥榚yeless鈥?shrimp from hydrothermal vents of the Mid-Atlantic Ridge. Nature 337: pp. 458-460 CrossRef
    19. Nuckley, DJ, Jinks, RN, Battelle, BA, Herzog, ED, Kass, L, Renninger, GH, Chamberlain, SC (1996) Retinal anatomy of a new species of bresiliid shrimp from a hydrothermal vent field on the Mid-Atlantic Ridge. Biol Bull 190: pp. 98-110 CrossRef
    20. Renninger, GH, Kass, L, Gleeson, RA, Dover, CL, Battelle, BA, Jinks, RN, Herzog, ED, Chamberlain, SC (1995) Sulfide as a chemical stimulus for deep-sea hydrothermal vent shrimp. Biol Bull 189: pp. 69-76 CrossRef
    21. Charmantier-Daures, M, Segonzac, M (1998) Organ of Bellonci and sinus gland in three decapods from Atlantic hydrothermal vents: Rimicaris exoculata, Chorocaris chacei, and Segonzacia mesatlantica. J Crust Biol 18: pp. 213-223 CrossRef
    22. Richter-Landsberg, C, Goldbaum, O (2003) Stress proteins in neural cells: functional roles in health and disease. Cell Mol Life Sci 60: pp. 337-349 CrossRef
    23. Desbruyeres, D, Laubier, L (1980) Alvinella pompejana gen. sp. nov., aberrant Ampharetidae from East Pacific Rise hydrothermal vents. Oceanol Acta 3: pp. 267-274
    24. Storch, V, Gaill, F (1986) Ultrastructural observations on feeding appendages and gills of Alvinella pompejana (Annelida, Polychaeta). Helgol盲nder Meeresuntersuch 40: pp. 309-319 CrossRef
    25. Jouin, C, Gaill, F (1990) Gills of hydrothermal vent annelids: structure, ultrastructure and functional implications in two alvinellid species. Prog Oceanog 24: pp. 59-69 CrossRef
    26. Verger-Bocquet, M Polychaeta: sensory structures. In: Harrison, FW, Gardiner, SL eds. (1992) Microscopic Anatomy of Invertebrates. Vol. 7 Annelida. Wiley-Liss, New York, pp. 181-196
    27. Hanstr枚m, B (1928) Vergleichende Anatomie des Nervensystems der Wirbellosen Tiere unter Ber眉cksichtigung seiner Funktion. Julias Springer, Berlin, Heidelberg, New York
    28. Bullock, TH, Horridge, GA (1965) Structure and Function in the Nervous System of Invertebrates. Vol. II. Freeman and Company, London
    29. Golding, DW Polychaeta: nervous system. In: Harrison, FW, Gardiner, SL eds. (1992) Microscopic Anatomy of Invertebrates. Wiley-Liss, New York, pp. 153-179
    30. Orrhage, L, M眉ller, MCM (2005) Morphology of the nervous system of Polychaeta (Annelida). Hydrobiol 535/536: pp. 79-111 CrossRef
    31. Heuer, CM, Muller, CHG, Todt, C, Loesel, R (2010) Comparative neuroanatomy suggests repeated reduction of neuroarchitectural complexity in Annelida. Front Zool 7: pp. 13 CrossRef
    32. Jones, ML, Gardiner, SL (1989) On the early development of the vestimentiferan tube worm Ridgeia sp. and observations on the nervous system and trophosome of Ridgeia sp. and Riftia pachyptila. Biol Bull 177: pp. 254-276 CrossRef
    33. Miyamoto, N, Shinozaki, A, Fujiwara, Y (2013) Neuroanatomy of the vestimentiferan tubeworm Lamellibrachia satsuma provides insights into the evolution of the polychaete nervous system. PLoS One 8: pp. 55151 CrossRef
    34. Eichinger, I, Hourdez, S, Bright, M (2013) Morphology, microanatomy and sequence data of Sclerolinum contortum (Siboglindae, Annelida) of the Gulf of Mexico. Org Div Evol 13: pp. 311-329 CrossRef
    35. Read G, Fauchald K: Polychaeta. Annelida. World Polychaeta database. [http://www.marinespecies.org/polychaeta/aphia.php?p=taxdetails&id=882], accessed 3/28/2014.
    36. Girguis, PR, Lee, RW (2006) Thermal preference and tolerance of alvinellids. Science 312: pp. 231-231 CrossRef
    37. Gardiner, SL Polychaeta: external anatomy. In: Harrison, FW, Gardiner, SL eds. (1992) Microscopic Anatomy of Invertebrates Vol. 7. Annelida. Wiley-Liss, New York, pp. 11-17
    38. Purschke, G Sense organs in polychaetes (Annelida). In: Bartolomaeus, T, Purschke, G eds. (2005) Morphology, Molecules, Evolution and Phylogeny in Polychaeta and Related Taxa. pp. 53-78 CrossRef
    39. Grelon, D, Morineaux, M, Desrosiers, G, Juniper, SK (2006) Feeding and territorial behavior of Paralvinella sulfincola, a polychaete worm at deep-sea hydrothermal vents of the Northeast Pacific Ocean. J Exp Mar Biol Eco 329: pp. 174-186 CrossRef
    40. Heuer, CM, Loesel, R (2008) Immunofluorescence analysis of the internal brain anatomy of Nereis diversicolor (Polychaeta, Annelida). Cell Tissue Res 331: pp. 713-724 CrossRef
    41. Engelhardt, RP, Dhainautcourtois, N, Tramu, G (1982) Immunohistochemical demonstration of a cck-like peptide in the nervous-system of a marine annelid worm, Nereis diversicolor Muller, CF. Cell Tissue Res 227: pp. 401-411 CrossRef
    42. Loesel, R, Heuer, CM (2010) The mushroom bodies鈥損rominent brain centres of arthropods and annelids with enigmatic evolutionary origin. Acta Zool 91: pp. 29-34 CrossRef
    43. Strausfeld, NJ (2012) Arthropod Brains: Evolution, Functional Elegance, and Historical Significance. Belknap Press, Harvard
    44. Conzelmanna, M, Williams, EA, Tunaru, S, Randel, N, Shahidi, R, Asadulina, A, Berger, J, Offermanns, S, J茅kely, G (2013) Conserved MIP receptor鈥搇igand pair regulates Platynereis larval settlement. Proc Natl Acad Sci U S A 110: pp. 8224-8229 CrossRef
    45. Rinke, C, Lee, RW (2009) Pathways, activities and thermal stability of anaerobic and aerobic enzymes in thermophilic vent paralvinellid worms. Mar Ecol Prog Ser 382: pp. 99-112 CrossRef
    46. Hartline, DK, Colman, DR (2007) Rapid conduction and the evolution of giant axons and myelinated fiber. Curr Biol 17: pp. 29-35 CrossRef
    47. G眉nther, J (1976) Impulse conduction in the myelinated giant fibers of the earthworm. structure and function of the dorsal nodes in the median giant fiber. J Comp Neurol 168: pp. 505-532 CrossRef
    48. Schweigreiter, R, Roots, BI, Bandtlow, CE, Gould, RM (2006) Understanding myelination through studying its evolution. Int Rev Neurobiol 73: pp. 219-273 CrossRef
    49. Roots, BI, Cardone, B, Pereyra, P (1991) Isolation and characterization of the myelin-like membranes ensheathing giant axons in the earthworm nerve cord. Ann NY Acad Sci 633: pp. 559-561 CrossRef
    50. Allen, NJ, Barres, BA (2009) Neuroscience: glia鈥攎ore than just brain glue. Nature 457: pp. 675-677 CrossRef
    51. Zalc, B, Goujet, D, Colman, D (2008) The origin of the myelination program in vertebrates. Curr Biol 18: pp. R511-R512 CrossRef
    52. Witt, KA, Mark, KS, Hom, S, Davis, TP (2003) Effects of hypoxia-reoxygenation on rat blood鈥揵rain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol 285: pp. 2820-2831
    53. Zoppo, GJ (2010) The neurovascular unit in the setting of stroke. J Intern Med 267: pp. 156-171 CrossRef
    54. Ronaldson, PT, Davis, TP (2012) Blood鈥揵rain barrier integrity and glial support: mechanisms that can be targeted for novel therapeutic approaches in stroke. Curr Pharm Des 18: pp. 3624-3644 CrossRef
    55. Orrhage, L (2001) On the anatomy of the central nervous system and the morphological value of the anterior end appendages of Ampharetidae, Pectinariidae and Terebellidae (Polychaeta). Acta Zool 82: pp. 57-71 CrossRef
    56. Korn, H (1958) Vergleichend-embryologische Untersuchungen an Harmothoe Kinberg (Polychaeta, Annelida). Z Wiss Zool 161: pp. 346-443
    57. Shigeno, S, Sasaki, T, Haszprunar, G (2007) Central nervous system of Chaetoderma japonicum (Caudofoveata, Aplacophora): implications for diversified ganglionic plans in early molluscan evolution. Biol Bull 213: pp. 122-134 CrossRef
    58. Faller, S, Rothe, BH, Todt, C, Schmidt-Rhaesa, A, Loesel, R (2012) Comparative neuroanatomy of Caudofoveata, Solenogastres, Polyplacophora, and Scaphopoda (Mollusca) and its phylogenetic implications. Zoomorph 131: pp. 149-170 CrossRef
    59. Orrhage, L (1980) On the structure and homologues of the anterior end of the polychaete families Sabellidae and Serpulidae. Zoomorph 96: pp. 113-168 CrossRef
    60. Desbruyeres, D, Laubier, L (1989) Paralvinella hessleri, new species of Alvinellidae (Polychaeta) from the Mariana Back-Arc Basin Hydrothermal Vents. Proc Biol Soc Wash 102: pp. 761-767
    61. Tsuchida, S, Suzuki, Y, Fujiwara, Y, Kawato, M, Uematsu, K, Yamanaka, T, Mizota, C, Yamamoto, H (2011) Epibiotic association between filamentous bacteria and the vent-associated galatheid crab, Shinkaia crosnieri (Decapoda: Anomura). J Mar Biol Ass UK 91: pp. 23-32 CrossRef
    62. Richter, S, Loesel, R, Purschke, G, Schmidt-Rhaesa, A, Scholtz, A, Stach, T, Vogt, L, Wanninger, A, Brenneis, G, Doring, C, Faller, S, Fritsch, M, Grobe, P, Heuer, CM, Kaul, S, Moller, OS, Muller, CHG, Rieger, V, Rothe, BH, Stegner, MEJ, Harzsch, S (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 7: pp. 29 CrossRef
  • 刊物主题:Zoology;
  • 出版者:BioMed Central
  • ISSN:1742-9994
文摘
Introduction Deep-sea alvinellid worm species endemic to hydrothermal vents, such as Alvinella and Paralvinella, are considered to be among the most thermotolerant animals known with their adaptability to toxic heavy metals, and tolerance of highly reductive and oxidative stressful environments. Despite the number of recent studies focused on their overall transcriptomic, proteomic, and metabolic stabilities, little is known regarding their sensory receptor cells and electrically active neuro-processing centers, and how these can tolerate and function in such harsh conditions. Results We examined the extra- and intracellular organizations of the epidermal ciliated sensory cells and their higher centers in the central nervous system through immunocytochemical, ultrastructural, and neurotracing analyses. We observed that these cells were rich in mitochondria and possessed many electron-dense granules, and identified specialized glial cells and serial myelin-like repeats in the head sensory systems of Paralvinella hessleri. Additionally, we identified the major epidermal sensory pathways, in which a pair of distinct mushroom bodies-like or small interneuron clusters was observed. These sensory learning and memory systems are commonly found in insects and annelids, but the alvinellid inputs are unlikely derived from the sensory ciliary cells of the dorsal head regions. Conclusions Our evidence provides insight into the cellular and system-wide adaptive structure used to sense, process, and combat the deep-sea hydrothermal vent environment. The alvinellid sensory cells exhibit characteristics of annelid ciliary types, and among the most unique features were the head sensory inputs and structure of the neural cell bodies of the brain, which were surrounded by multiple membranes. We speculated that such enhanced protection is required for the production of normal electrical signals, and to avoid the breakdown of the membrane surrounding metabolically fragile neurons from oxidative stress. Such pivotal acquisition is not broadly found in the all body parts, suggesting the head sensory inputs are specific, and these heterogenetic protection mechanisms may be present in alvinellid worms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700