TRPV4: physiological role and therapeutic potential in respiratory diseases
详细信息    查看全文
  • 作者:Neil M. Goldenberg (1) (2)
    Krishnan Ravindran (2)
    Wolfgang M. Kuebler (2) (3) (4) (5)

    1. Department of Anesthesia
    ; University of Toronto ; Toronto ; ON ; Canada
    2. The Keenan Research Centre at the Li Ka Shing Knowledge Institute of St. Michael鈥檚 Hospital
    ; 30 Bond Street ; Bond Wing 2-021 ; Toronto ; ON ; M5B 1W8 ; Canada
    3. German Heart Institute
    ; Berlin ; Germany
    4. Institute of Physiology
    ; Charit茅-Universit盲tsmedizin Berlin ; Berlin ; Germany
    5. Departments of Surgery and Physiology
    ; University of Toronto ; Toronto ; ON ; Canada
  • 关键词:TRPV4 structure ; Transient receptor potential ; Acute lung injury
  • 刊名:Naunyn-Schmiedeberg's Archives of Pharmacology
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:388
  • 期:4
  • 页码:421-436
  • 全文大小:1,142 KB
  • 参考文献:1. Adapala, RK, Talasila, PK, Bratz, IN, Zhang, DX, Suzuki, M, Meszaros, JG, Thodeti, CK (2011) PKC伪 mediates acetylcholine-induced activation of TRPV4-dependent calcium influx in endothelial cells. Am J Physiol Heart Circ Physiol 301: pp. H757-H765
    2. Alessandri-Haber, N, Dina, OA, Chen, X, Levine, JD (2009) TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci 29: pp. 6217-6228
    3. Allardyce, CS, Dyson, PJ (2001) Ruthenium in medicine: current clinical uses and future prospects. Platin Met Rev 45: pp. 62-69
    4. Alvarez, DF, King, JA, Weber, D, Addison, E, Liedtke, W, Townsley, MI (2006) Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury. Circ Res 99: pp. 988-995
    5. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS (2012) Acute respiratory distress syndrome: the Berlin Definition. In: JAMA. pp 2526鈥?533
    Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: pp. 1301-1308
    6. Arniges, M, Fern谩ndez-Fern谩ndez, JM, Albrecht, N, Schaefer, M, Valverde, MA (2006) Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem 281: pp. 1580-1586
    7. Arniges, M, V谩zquez, E, Fern谩ndez-Fern谩ndez, JM, Valverde, MA (2004) Swelling-activated Ca2+ entry via TRPV4 channel is defective in cystic fibrosis airway epithelia. J Biol Chem 279: pp. 54062-54068
    8. Balakrishna, S, Song, W, Achanta, S, Doran, SF, Liu, B, Kaelberer, MM, Yu, Z, Sui, A, Cheung, M, Leishman, E, Eidam, HS, Ye, G, Willette, RN, Thorneloe, KS, Bradshaw, HB, Matalon, S, Jordt, S-E (2014) TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury. Am J Physiol Lung Cell Mol Physiol.
    9. Barnes, PJ, Liu, SF (1995) Regulation of pulmonary vascular tone. Pharmacol Rev 47: pp. 87-131
    10. Bourne, GW, Trifar贸, JM (1982) The gadolinium ion: a potent blocker of calcium channels and catecholamine release from cultured chromaffin cells. Neuroscience 7: pp. 1615-1622
    11. Chen, L, Ka脽mann, M, Sendeski, M, Tsvetkov, D, Marko, L, Michalick, L, Riehle, M, Liedtke, WB, Kuebler, WM, Harteneck, C, Tepel, M, Patzak, A, Gollasch, M (2014) Functional transient receptor potential vanilloid 1 and transient receptor potential vanilloid 4 channels along different segments of the renal vasculature. Acta Physiol (Oxf).
    12. Clapham, DE (2003) TRP channels as cellular sensors. Nature 426: pp. 517-524
    13. Cuajungco, MP, Grimm, C, Oshima, K, D鈥檋oedt, D, Nilius, B, Mensenkamp, AR, Bindels, RJM, Plomann, M, Heller, S (2006) PACSINs bind to the TRPV4 cation channel: PACSIN 3 modulates the subcellular localization of TRPV4. J Biol Chem 281: pp. 18753-18762
    14. D鈥檋oedt, D, Owsianik, G, Prenen, J, Cuajungco, MP, Grimm, C, Heller, S, Voets, T, Nilius, B (2008) Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3. J Biol Chem 283: pp. 6272-6280
    15. Damann, N, Owsianik, G, Li, S, Poll, C, Nilius, B (2009) The calcium-conducting ion channel transient receptor potential canonical 6 is involved in macrophage inflammatory protein-2-induced migration of mouse neutrophils. Acta Physiol (Oxf) 195: pp. 3-11
    16. Denadai-Souza, A, Martin, L, Paula, MAV, Avellar, MCW, Muscar谩, MN, Vergnolle, N, Cenac, N (2012) Role of transient receptor potential vanilloid 4 in rat joint inflammation. Arthritis Rheum 64: pp. 1848-1858
    17. Paolo, G, Camilli, P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443: pp. 651-657
    18. Du, J, Ma, X, Shen, B, Huang, Y, Birnbaumer, L, Yao, X (2014) TRPV4, TRPC1, and TRPP2 assemble to form a flow-sensitive heteromeric channel. FASEB J.
    19. Du, J, Wong, W-Y, Sun, L, Huang, Y, Yao, X (2012) Protein kinase G inhibits flow-induced Ca2+ entry into collecting duct cells. J Am Soc Nephrol 23: pp. 1172-1180
    20. Earley, S, Heppner, TJ, Nelson, MT, Brayden, JE (2005) TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res 97: pp. 1270-1279
    21. Everaerts, W, Zhen, X, Ghosh, D, Vriens, J, Gevaert, T, Gilbert, JP, Hayward, NJ, McNamara, CR, Xue, F, Moran, MM, Strassmaier, T, Uykal, E, Owsianik, G, Vennekens, R, Ridder, D, Nilius, B, Fanger, CM, Voets, T (2010) Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc Natl Acad Sci U S A 107: pp. 19084-19089
    22. Fan, H-C, Zhang, X, McNaughton, PA (2009) Activation of the TRPV4 ion channel is enhanced by phosphorylation. J Biol Chem 284: pp. 27884-27891
    23. Fernandes, J, Lorenzo, IM, Andrade, YN, Garcia-Elias, A, Serra, SA, Fernandez-Fernandez, JM, Valverde, MA (2008) IP3 sensitizes TRPV4 channel to the mechano- and osmotransducing messenger 5鈥?6-鈥?epoxyeicosatrienoic acid. J Cell Biol 181: pp. 143-155
    24. Fern谩ndez-Fern谩ndez, JM, Andrade, YN, Arniges, M, Fernandes, J, Plata, C, Rubio-Moscardo, F, V谩zquez, E, Valverde, MA (2008) Functional coupling of TRPV4 cationic channel and large conductance, calcium-dependent potassium channel in human bronchial epithelial cell lines. Pflugers Arch 457: pp. 149-159
    25. Fichna, J, Mokrowiecka, A, Cygankiewicz, AI, Zakrzewski, PK, Ma艂ecka-Panas, E, Janecka, A, Krajewska, WM, Storr, MA (2012) Transient receptor potential vanilloid 4 blockade protects against experimental colitis in mice: a new strategy for inflammatory bowel diseases treatment?. Neurogastroenterol Motil 24: pp. e557-e560
    26. Flockerzi, V, Nilius, B (2014) TRPs: truly remarkable proteins. Handb Exp Pharmacol 222: pp. 1-12
    27. Garcia-Elias, A, Mrkonjic, S, Jung, C, Pardo-Pastor, C, Vicente, R, Valverde, MA (2014) The TRPV4 channel. Handb Exp Pharmacol 222: pp. 293-319
    28. Garcia-Elias, A, Mrkonjic, S, Pardo-Pastor, C, Inada, H, Hellmich, UA, Rubio-Moscard贸, F, Plata, C, Gaudet, R, Vicente, R, Valverde, MA (2013) Phosphatidylinositol-4,5-biphosphate-dependent rearrangement of TRPV4 cytosolic tails enables channel activation by physiological stimuli. Proc Natl Acad Sci U S A 110: pp. 9553-9558
    29. Goldenberg N, Wang L, Ranke H, Tabuchi A, Kuebler WM (2014) TRPV4 channel activity is required for hypoxic pulmonary vasoconstriction. In: American Thoracic Society International Conference Abstracts. American Thoracic Society, pp A5548鈥揂5548
    30. G眉ler, AD, Lee, H, Iida, T, Shimizu, I, Tominaga, M, Caterina, M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22: pp. 6408-6414
    31. Hamanaka, K, Jian, M-Y, Townsley, MI, King, JA, Liedtke, W, Weber, DS, Eyal, FG, Clapp, MM, Parker, JC (2010) TRPV4 channels augment macrophage activation and ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 299: pp. L353-L362
    32. Hamanaka, K, Jian, M-Y, Weber, DS, Alvarez, DF, Townsley, MI, Al-Mehdi, AB, King, JA, Liedtke, W, Parker, JC (2007) TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. Am J Physiol Lung Cell Mol Physiol 293: pp. L923-L932
    33. Hampl, V, Herget, J (2000) Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension. Physiol Rev 80: pp. 1337-1372
    34. Hoenderop, JGJ, Voets, T, Hoefs, S, Weidema, F, Prenen, J, Nilius, B, Bindels, RJM (2003) Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 22: pp. 776-785
    35. Huang, W, Kingsbury, MP, Turner, MA, Donnelly, JL, Flores, NA, Sheridan, DJ (2001) Capillary filtration is reduced in lungs adapted to chronic heart failure: morphological and haemodynamic correlates. Cardiovasc Res 49: pp. 207-217
    36. Ivey, CL, Roy, BJ, Townsley, MI (1998) Ablation of lung endothelial injury after pacing-induced heart failure is related to alterations in Ca2+ signaling. Am J Physiol 275: pp. H844-H851
    37. Jian, M-Y, King, JA, Al-Mehdi, A-B, Liedtke, W, Townsley, MI (2008) High vascular pressure-induced lung injury requires P450 epoxygenase-dependent activation of TRPV4. Am J Respir Cell Mol Biol 38: pp. 386-392
    38. Kaestle, SM, Reich, CA, Yin, N, Habazettl, H, Weimann, J, Kuebler, WM (2007) Nitric oxide-dependent inhibition of alveolar fluid clearance in hydrostatic lung edema. Am J Physiol Lung Cell Mol Physiol 293: pp. L859-L869
    39. Kerem, A, Yin, J, Kaestle, SM, Hoffmann, J, Schoene, AM, Singh, B, Kuppe, H, Borst, MM, Kuebler, WM (2010) Lung endothelial dysfunction in congestive heart failure: role of impaired Ca2+ signaling and cytoskeletal reorganization. Circ Res 106: pp. 1103-1116
    40. Keser眉, B, Barbosa-Sicard, E, Popp, R, Fisslthaler, B, Dietrich, A, Gudermann, T, Hammock, BD, Falck, JR, Weissmann, N, Busse, R, Fleming, I (2008) Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response. FASEB J 22: pp. 4306-4315
    41. Klausen, TK, Pagani, A, Minassi, A, Ech-Chahad, A, Prenen, J, Owsianik, G, Hoffmann, EK, Pedersen, SF, Appendino, G, Nilius, B (2009) Modulation of the transient receptor potential vanilloid channel TRPV4 by 4alpha-phorbol esters: a structure-activity study. J Med Chem 52: pp. 2933-2939
    42. K枚hler, R, Heyken, W-T, Heinau, P, Schubert, R, Si, H, Kacik, M, Busch, C, Grgic, I, Maier, T, Hoyer, J (2006) Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arterioscler Thromb Vasc Biol 26: pp. 1495-1502
    43. Kuebler, WM, Uhlig, U, Goldmann, T, Schael, G, Kerem, A, Exner, K, Martin, C, Vollmer, E, Uhlig, S (2003) Stretch activates nitric oxide production in pulmonary vascular endothelial cells in situ. Am J Respir Crit Care Med 168: pp. 1391-1398
    44. Kuebler, WM, Ying, X, Singh, B, Issekutz, AC, Bhattacharya, J (1999) Pressure is proinflammatory in lung venular capillaries. J Clin Invest 104: pp. 495-502
    45. Lacampagne, A, Gannier, F, Argibay, J, Garnier, D, Guennec, JY (1994) The stretch-activated ion channel blocker gadolinium also blocks L-type calcium channels in isolated ventricular myocytes of the guinea-pig. Biochim Biophys Acta 1191: pp. 205-208
    46. Lansman, JB, Hallam, TJ, Rink, TJ (1987) Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers?. Nature 325: pp. 811-813
    47. Liedtke, W, Choe, Y, Mart铆-Renom, MA, Bell, AM, Denis, CS, Sali, A, Hudspeth, AJ, Friedman, JM, Heller, S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103: pp. 525-535
    48. Liedtke, W, Friedman, JM (2003) Abnormal osmotic regulation in trpv4-/- mice. Proc Natl Acad Sci U S A 100: pp. 13698-13703
    49. Ma, X, Cao, J, Luo, J, Nilius, B, Huang, Y, Ambudkar, IS, Yao, X (2010) Depletion of intracellular Ca2+ stores stimulates the translocation of vanilloid transient receptor potential 4-c1 heteromeric channels to the plasma membrane. Arterioscler Thromb Vasc Biol 30: pp. 2249-2255
    50. Ma, X, Cheng, K-T, Wong, C-O, O鈥橬eil, RG, Birnbaumer, L, Ambudkar, IS, Yao, X (2011) Cell Calcium 50: pp. 502-509
    51. McAlexander, MA, Luttmann, MA, Hunsberger, GE, Undem, BJ (2014) Transient receptor potential vanilloid 4 activation constricts the human bronchus via the release of cysteinyl leukotrienes. J Pharmacol Exp Ther 349: pp. 118-125
    52. Mendoza, SA, Fang, J, Gutterman, DD, Wilcox, DA, Bubolz, AH, Li, R, Suzuki, M, Zhang, DX (2010) TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am J Physiol Heart Circ Physiol 298: pp. H466-H476
    53. Mercado, J, Baylie, R, Navedo, MF, Yuan, C, Scott, JD, Nelson, MT, Brayden, JE, Santana, LF (2014) Local control of TRPV4 channels by AKAP150-targeted PKC in arterial smooth muscle. J Gen Physiol 143: pp. 559-575
    54. Michalick, L, Mertens, M, Liedtke, W, Kuebler, WM (2013) Transient receptor potential cation channel vanilloid (TRPV) 4 in ventilator-induced lung injury (VILI). FASEB J 27: pp. 914.12
    55. Moiseenkova-Bell, VY, Stanciu, LA, Serysheva, II, Tobe, BJ, Wensel, TG (2008) Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc Natl Acad Sci 105: pp. 7451-7455
    56. Naruse, K, Sokabe, M (1993) Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. Am J Physiol 264: pp. C1037-C1044
    57. Nilius, B, Prenen, J, Wissenbach, U, B枚dding, M, Droogmans, G (2001) Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflugers Arch 443: pp. 227-233
    58. Nilius, B, Voets, T (2013) The puzzle of TRPV4 channelopathies. EMBO Rep 14: pp. 845
    59. Nilius, B, Vriens, J, Prenen, J, Droogmans, G, Voets, T (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 286: pp. C195-C205
    60. O鈥橬eil, RG, Heller, S (2005) The mechanosensitive nature of TRPV channels. Pflugers Arch 451: pp. 193-203
    61. Parker, JC, Ivey, CL (1997) Isoproterenol attenuates high vascular pressure-induced permeability increases in isolated rat lungs. J Appl Physiol 83: pp. 1962-1967
    62. Parker, JC, Ivey, CL, Tucker, JA (1998) Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs. J Appl Physiol 84: pp. 1113-1118
    63. Parton, RG, Simons, K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8: pp. 185-194
    64. Phelps, CB, Wang, RR, Choo, SS, Gaudet, R (2010) Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J Biol Chem 285: pp. 731-740
    65. Pochynyuk, O, Zaika, O, O鈥橬eil, RG, Mamenko, M (2013) Novel insights into TRPV4 function in the kidney. Pflugers Arch 465: pp. 177-186
    66. Ryskamp, DA, Witkovsky, P, Barabas, P, Huang, W, Koehler, C, Akimov, NP, Lee, SH, Chauhan, S, Xing, W, Renter铆a, RC, Liedtke, W, Krizaj, D (2011) The polymodal ion channel transient receptor potential vanilloid 4 modulates calcium flux, spiking rate, and apoptosis of mouse retinal ganglion cells. J Neurosci 31: pp. 7089-7101
    67. Saliez, J, Bouzin, C, Rath, G, Ghisdal, P, Desjardins, F, Rezzani, R, Rodella, LF, Vriens, J, Nilius, B, Feron, O, Balligand, J-L, Dessy, C (2008) Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells. Circulation 117: pp. 1065-1074
    68. Sandoval, R, Malik, AB, Minshall, RD, Kouklis, P, Ellis, CA, Tiruppathi, C (2001) Ca(2+) signalling and PKCalpha activate increased endothelial permeability by disassembly of VE-cadherin junctions. J Physiol Lond 533: pp. 433-445
    69. Schaefer, M (2005) Homo- and heteromeric assembly of TRP channel subunits. Pflugers Arch 451: pp. 35-42
    70. Schmitt, F, Govindaswamy, P, S眉ss-Fink, G, Ang, WH, Dyson, PJ, Juillerat-Jeanneret, L, Therrien, B (2008) Ruthenium porphyrin compounds for photodynamic therapy of cancer. J Med Chem 51: pp. 1811-1816
    71. Shigematsu, H, Sokabe, T, Danev, R, Tominaga, M, Nagayama, K (2010) A 3.5-nm structure of rat TRPV4 cation channel revealed by Zernike phase-contrast cryoelectron microscopy. J Biol Chem 285: pp. 11210-11218
    72. Shin, SH, Lee, EJ, Hyun, S, Chun, J, Kim, Y, Kang, SS (2012) Phosphorylation on the Ser 824 residue of TRPV4 prefers to bind with F-actin than with microtubules to expand the cell surface area. Cell Signal 24: pp. 641-651
    73. Shukla, AK, Kim, J, Ahn, S, Xiao, K, Shenoy, SK, Liedtke, W, Lefkowitz, RJ (2010) Arresting a transient receptor potential (TRP) channel: -Arrestin 1 mediates ubiquitination and functional down-regulation of TRPV4. J Biol Chem 285: pp. 30115-30125
    74. Simonneau, G, Gatzoulis, MA, Adatia, I, Celermajer, D, Denton, C, Ghofrani, A, Gomez Sanchez, MA, Krishna Kumar, R, Landzberg, M, Machado, RF, Olschewski, H, Robbins, IM, Souza, R (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62: pp. D34-D41
    75. Sonkusare, SK, Bonev, AD, Ledoux, J, Liedtke, W, Kotlikoff, MI, Heppner, TJ, Hill-Eubanks, DC, Nelson, MT (2012) Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science 336: pp. 597-601
    76. Sonkusare, SK, Dalsgaard, T, Bonev, AD, Hill-Eubanks, DC, Kotlikoff, MI, Scott, JD, Santana, LF, Nelson, MT (2014) AKAP150-dependent cooperative TRPV4 channel gating is central to endothelium-dependent vasodilation and is disrupted in hypertension. Sci Signal 7: pp. ra66
    77. Spinsanti, G, Zannolli, R, Panti, C, Ceccarelli, I, Marsili, L, Bachiocco, V, Frati, F, Aloisi, AM (2008) Quantitative real-time PCR detection of TRPV1-4 gene expression in human leukocytes from healthy and hyposensitive subjects. Mol Pain 4: pp. 51
    78. Stewart, AP, Smith, GD, Sandford, RN, Edwardson, JM (2010) Atomic force microscopy reveals the alternating subunit arrangement of the TRPP2-TRPV4 heterotetramer. Biophys J 99: pp. 790-797
    79. Strotmann, R, Harteneck, C, Nunnenmacher, K, Schultz, G, Plant, TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2: pp. 695-702
    80. Strotmann, R, Schultz, G, Plant, TD (2003) Ca2+-dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site. J Biol Chem 278: pp. 26541-26549
    81. Sylvester, JT, Shimoda, LA, Aaronson, PI, Ward, JPT (2012) Hypoxic pulmonary vasoconstriction. Physiol Rev 92: pp. 367-520
    82. Tang, C, To, WK, Meng, F, Wang, Y, Gu, Y (2010) A role for receptor-operated Ca2+ entry in human pulmonary artery smooth muscle cells in response to hypoxia. Physiol Res 59: pp. 909-918
    83. Tang C, Yin J, Kuebler WM (2013) Role of Transient receptor potential vanilloid 4 in neutrophil activation and acute lung injury. FASEB J 27
    84. Thodeti, CK, Matthews, B, Ravi, A, Mammoto, A, Ghosh, K, Bracha, AL, Ingber, DE (2009) TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104: pp. 1123-1130
    85. Thorneloe, KS, Cheung, M, Bao, W, Alsaid, H, Lenhard, S, Jian, M-Y, Costell, M, Maniscalco-Hauk, K, Krawiec, JA, Olzinski, A, Gordon, E, Lozinskaya, I, Elefante, L, Qin, P, Matasic, DS, James, C, Tunstead, J, Donovan, B, Kallal, L, Waszkiewicz, A, Vaidya, K, Davenport, EA, Larkin, J, Burgert, M, Casillas, LN, Marquis, RW, Ye, G, Eidam, HS, Goodman, KB, Toomey, JR, Roethke, TJ, Jucker, BM, Schnackenberg, CG, Townsley, MI, Lepore, JJ, Willette, RN (2012) An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci Transl Med 4: pp. 159ra148
    86. Thorneloe, KS, Sulpizio, AC, Lin, Z, Figueroa, DJ, Clouse, AK, McCafferty, GP, Chendrimada, TP, Lashinger, ESR, Gordon, E, Evans, L, Misajet, BA, Demarini, DJ, Nation, JH, Casillas, LN, Marquis, RW, Votta, BJ, Sheardown, SA, Xu, X, Brooks, DP, Laping, NJ, Westfall, TD (2008) N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. J Pharmacol Exp Ther 326: pp. 432-442
    87. Tiruppathi, C, Ahmmed, GU, Vogel, SM, Malik, AB (2006) Ca2+ signaling, TRP channels, and endothelial permeability. Microcirculation 13: pp. 693-708
    88. Urban, N, Hill, K, Wang, L, Kuebler, WM, Schaefer, M (2012) Novel pharmacological TRPC inhibitors block hypoxia-induced vasoconstriction. Cell Calcium 51: pp. 194-206
    89. Voets, T, Prenen, J, Vriens, J, Watanabe, H, Janssens, A, Wissenbach, U, B枚dding, M, Droogmans, G, Nilius, B (2002) Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277: pp. 33704-33710
    90. Vriens, J, Watanabe, H, Janssens, A, Droogmans, G, Voets, T, Nilius, B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A 101: pp. 396-401
    91. Wang, L, Yin, J, Nickles, HT, Ranke, H, Tabuchi, A, Hoffmann, J, Tabeling, C, Barbosa-Sicard, E, Chanson, M, Kwak, BR, Shin, H-S, Wu, S, Isakson, BE, Witzenrath, M, Wit, C, Fleming, I, Kuppe, H, Kuebler, WM (2012) Hypoxic pulmonary vasoconstriction requires connexin 40-mediated endothelial signal conduction. J Clin Invest 122: pp. 4218-4230
    92. Wang, Y, Fu, X, Gaiser, S, Kottgen, M, Kramer-Zucker, A, Walz, G, Wegierski, T (2007) OS-9 regulates the transit and polyubiquitination of TRPV4 in the endoplasmic reticulum. J Biol Chem 282: pp. 36561-36570
    93. Ware, LB, Matthay, MA (2000) The acute respiratory distress syndrome. N Engl J Med 342: pp. 1334-1349
    94. Watanabe, H, Vriens, J, Janssens, A, Wondergem, R, Droogmans, G, Nilius, B (2003) Modulation of TRPV4 gating by intra- and extracellular Ca2+. Cell Calcium 33: pp. 489-495
    95. Watanabe, H, Vriens, J, Prenen, J, Droogmans, G, Voets, T, Nilius, B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424: pp. 434-438
    96. Watanabe, H, Vriens, J, Suh, SH, Benham, CD, Droogmans, G, Nilius, B (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277: pp. 47044-47051
    97. Wegierski, T, Hill, K, Schaefer, M, Walz, G (2006) The HECT ubiquitin ligase AIP4 regulates the cell surface expression of select TRP channels. EMBO J 25: pp. 5659-5669
    98. Willette, RN, Bao, W, Nerurkar, S, Yue, T-L, Doe, CP, Stankus, G, Turner, GH, Ju, H, Thomas, H, Fishman, CE, Sulpizio, A, Behm, DJ, Hoffman, S, Lin, Z, Lozinskaya, I, Casillas, LN, Lin, M, Trout, REL, Votta, BJ, Thorneloe, K, Lashinger, ESR, Figueroa, DJ, Marquis, R, Xu, X (2008) Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: part 2. J Pharmacol Exp Ther 326: pp. 443-452
    99. Xia, Y, Fu, Z, Hu, J, Huang, C, Paudel, O, Cai, S, Liedtke, W, Sham, JSK (2013) TRPV4 channel contributes to serotonin-induced pulmonary vasoconstriction and the enhanced vascular reactivity in chronic hypoxic pulmonary hypertension. Am J Physiol Cell Physiol.
    100. Yang, X-R, Lin, AHY, Hughes, JM, Flavahan, NA, Cao, Y-N, Liedtke, W, Sham, JSK (2012) Upregulation of osmo-mechanosensitive TRPV4 channel facilitates chronic hypoxia-induced myogenic tone and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 302: pp. L555-L568
    101. Yang, X-R, Lin, M-J, McIntosh, LS, Sham, JSK (2006) Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 290: pp. L1267-L1276
    102. Yang, XC, Sachs, F (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243: pp. 1068-1071
    103. Yellen, G (2002) The voltage-gated potassium channels and their relatives. Nature 419: pp. 35-42
    104. Yeung, T, Terebiznik, M, Yu, L, Silvius, J, Abidi, WM, Philips, M, Levine, T, Kapus, A, Grinstein, S (2006) Receptor activation alters inner surface potential during phagocytosis. Science 313: pp. 347-351
    105. Yin, J, Hoffmann, J, Kaestle, SM, Neye, N, Wang, L, Baeurle, J, Liedtke, W, Wu, S, Kuppe, H, Pries, AR, Kuebler, WM (2008) Negative-feedback loop attenuates hydrostatic lung edema via a cGMP-dependent regulation of transient receptor potential vanilloid 4. Circ Res 102: pp. 966-974
    106. Yin, J, Kuebler, WM (2010) Mechanotransduction by TRP channels: general concepts and specific role in the vasculature. Cell Biochem Biophys 56: pp. 1-18
    107. Yu, H, Wang, L, Kapus, A, Kuebler, WM (2012) Role of CFTR and sphingolipids in hypoxic pulmonary vasoconstriction. FASEB J 26: pp. 700.3
    108. Zaika, O, Mamenko, M, Berrout, J, Boukelmoune, N, O鈥橬eil, RG, Pochynyuk, O (2013) TRPV4 dysfunction promotes renal cystogenesis in autosomal recessive polycystic kidney disease. J Am Soc Nephrol 24: pp. 604-616
    109. Zhao, L, Sullivan, MN, Chase, M, Gonzales, AL, Earley, S (2014) Calcineurin/NFAT-coupled TRPV4 Ca(2+) sparklets stimulate airway smooth muscle cell proliferation. Am J Respir Cell Mol Biol.
    110. Zhu, G, Gulsvik, A, Bakke, P, Ghatta, S, Anderson, W, Lomas, DA, Silverman, EK, Pillai, SG (2009) Association of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease. Hum Mol Genet 18: pp. 2053-2062
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Pharmacology and Toxicology
    Neurosciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1912
文摘
Members of the family of transient receptor potential (TRP) channels have been implicated in the pathophysiology of a host of lung diseases. The role of these multimodal cation channels in lung homeostasis is thought to stem from their ability to respond to changes in mechanical stimuli (i.e., shear and stretch), as well as to various protein and lipid mediators. The vanilloid subfamily member, TRPV4, which is highly expressed in the majority of lung cell types, is well positioned for critical involvement in several pulmonary conditions, including edema formation, control of pulmonary vascular tone, and the lung response to local or systemic inflammatory insults. In recent years, several pharmacological inhibitors of TRPV4 have been developed, and the current generation of compounds possess high affinity and specificity for TRPV4. As such, we have now entered a time where the therapeutic potential of TRPV4 inhibitors can be systematically examined in a variety of lung diseases. Due to this fact, this review seeks to describe the current state of the art with respect to the role of TRPV4 in pulmonary homeostasis and disease, and to highlight the current and future roles of TRPV4 inhibitors in disease treatment. We will first focus on genera aspects of TRPV4 structure and function, and then will discuss known roles for TRPV4 in pulmonary diseases, including pulmonary edema formation, pulmonary hypertension, and acute lung injury. Finally, both promising aspects and potential pitfalls of the clinical use of TRPV4 inhibitors will be examined.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700