Detailed genetic analysis of hemagglutinin-neuraminidase glycoprotein gene in human parainfluenza virus type 1 isolates from patients with acute respiratory infection between 2002 and 2009 in Yamagata prefecture, Japan
详细信息    查看全文
  • 作者:Katsumi Mizuta (1)
    Mika Saitoh (2)
    Miho Kobayashi (2)
    Hiroyuki Tsukagoshi (2)
    Yoko Aoki (1)
    Tatsuya Ikeda (1)
    Chieko Abiko (1)
    Noriko Katsushima (3)
    Tsutomu Itagaki (4)
    Masahiro Noda (5)
    Kunihisa Kozawa (2)
    Tadayuki Ahiko (1)
    Hirokazu Kimura (2) (6)
  • 关键词:Human parainfluenza virus ; Maximum likelihood (ML) method ; Phylogenetic analysis
  • 刊名:Virology Journal
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:8
  • 期:1
  • 全文大小:245KB
  • 参考文献:1. Karron RA, Collins PL: Parainfluenza viruses. In / Fields virology. / Volume 1. 5th edition. Edited by: Knipe DM, Howley PM. Philadelphia: Lippincott Williams & Wilkins; 2007:1497鈥?526.
    2. Griffin MR, Walker FJ, Iwane MK, Weinberg GA, Staat MA, Erdman DD, New Vaccine Surveillance Network Study Group: Epidemiology of respiratory infections in young children: insights from the new vaccine surveillance network. / Pediatr Infect Dis J 2004,23(11 Suppl):S188鈥?92.
    3. Moscona A: Entry of parainfluenza virus into cells as a target for interrupting childhood respiratory disease. / J Clin Invest 2005, 115:1688鈥?698. CrossRef
    4. Parrott RH, Vargosko A, Luckey A, Kim HW, Cumming C, Chanock R: Clinical features of infection with hemadsorption viruses. / N Engl J Med 1959, 260:731鈥?38. CrossRef
    5. Parrott RH, Vargosko AJ, Kim HW, Bell JA, Chanock RM: Acute respiratory diseases of viral etiology. III. parainfluenza. Myxoviruses. / Am J Public Health Nations Health 1962, 52:907鈥?17. CrossRef
    6. Matsuse H, Kondo Y, Saeki S, Nakata H, Fukushima C, Mizuta Y, Kohno S: Naturally occurring parainfluenza virus 3 infection in adults induces mild exacerbation of asthma associated with increased sputum concentrations of cysteinyl leukotrienes. / Int Arch Allergy Immunol 2005, 138:267鈥?72. CrossRef
    7. Do AH, van Doorn HR, Nghiem MN, Bryant JE, Hoang TH, Do QH, Van TL, Tran TT, Wills B, Nguyen VC, Vo MH, Vo CK, Nguyen MD, Farrar J, Tran TH, de Jong MD: Viral etiologies of acute respiratory infections among hospitalized Vietnamese children in Ho Chi Minh City, 2004鈥?008. / PLoS One 2011, 6:e18176. CrossRef
    8. Iwane MK, Edwards KM, Szilagyi PG, Walker FJ, Griffin MR, Weinberg GA, Coulen C, Poehling KA, Shone LP, Balter S, Hall CB, Erdman DD, Wooten K, Schwartz B, New Vaccine Surveillance Network: Population-based surveillance for hospitalizations associated with respiratory syncytial virus, influenza virus, and parainfluenza viruses among young children. / Pediatrics 2004, 113:1758鈥?764. CrossRef
    9. Laurichesse H, Dedman D, Watson JM, Zambon MC: Epidemiological features of parainfluenza virus infections: laboratory surveillance in England and Wales, 1975鈥?997. / Eur J Epidemiol 1999, 15:475鈥?84. CrossRef
    10. Henrickson KJ: Parainfluenza viruses. / Clin Microbiol Rev 2003, 16:242鈥?64. CrossRef
    11. Lawrence MC, Borg NA, Streltsov VA, Pilling PA, Epa VC, Varghese JN, McKimm-Breschkin JL, Colman PM: Structure of the haemagglutinin-neuraminidase from human parainfluenza virus type III. / J Mol Biol 2004, 335:1343鈥?357. CrossRef
    12. Kimura M: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. / J Mol Evol 1980, 16:111鈥?20. CrossRef
    13. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. / Mol Biol Evol 1987, 4:406鈥?25.
    14. Felsenstein J: Evolutionary trees from DNA sequences: a maximum likelihood approach. / J Mol Evol 1981, 17:368鈥?76. CrossRef
    15. Cherry JD: The Common Cold. In / Textbook of Pediatric Infectious Diseases. 5th edition. Edited by: Feigin RD, Cherry JD, Demmler GJ, Kaplan SL. Philadelphia: Saunders; 2003:140鈥?46.
    16. Robert CW: Bronchiolitis and Infectious Asthma. In / Textbook of Pediatric Infectious Diseases. 5th edition. Edited by: Feigin RD, Cherry JD, Demmler GJ, Kaplan SL. Philadelphia: Saunders; 2003:273鈥?82.
    17. Mizuta K, Abiko C, Aoki Y, Suto A, Hoshina H, Itagaki T, Katsushima N, Matsuzaki Y, Hongo S, Noda M, Kimura H, Ootani K: Analysis of monthly isolation of respiratory viruses from children by cell culture using a microplate method: a two-year study from 2004 to 2005 in Yamagata, Japan. / Jpn J Infect Dis 2008, 61:196鈥?01.
    18. Itagaki T, Abiko C, Ikeda T, Aoki Y, Seto J, Mizuta K, Ahiko T, Tsukagoshi H, Nagano M, Noda M, Mizutani T, Kimura H: Sequence and phylogenetic analyses of Saffold cardiovirus from children with exudative tonsillitis in Yamagata, Japan. / Scand J Infect Dis 2010, 42:950鈥?52. CrossRef
    19. Kumar S, Tamura K, Nei M: MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. / Brief Bioinform 2004, 5:150鈥?63. CrossRef
    20. Mizuta K, Hirata A, Suto A, Aoki Y, Ahiko T, Itagaki T, Tsukagoshi H, Morita Y, Obuchi M, Akiyama M, Okabe N, Noda M, Tashiro M, Kimura H: Phylogenetic and cluster analysis of human rhinovirus species A (HRV-A) isolated from children with acute respiratory infections in Yamagata, Japan. / Virus Res 2010, 147:265鈥?74. CrossRef
    21. Pond SL, Frost SD: Datamonkey: Rapid detection of selective pressure on individual sites of codon alignments. / Bioinf 2005,21(10):2531鈥?533. CrossRef
    22. Yang Z: Estimating the pattern of nucleotide substitution. / J Mol Evol 1994, 39:105鈥?11.
    23. Yang Z: Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. / J Mol Evol 1994, 39:306鈥?14. CrossRef
    24. Rambaut A: Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. / Bioinf 2000, 16:395鈥?99. CrossRef
    25. Goldman N: Statistical tests of models of DNA substitution. / J Mol Evol 1993, 36:182鈥?98. CrossRef
    26. Renner SS: Relaxed molecular clocks for dating historical plant dispersal events. / Trends Plant Sci 2005, 10:550鈥?58. CrossRef
    27. Sanju谩n R, Nebot MR, Chirico N, Mansky LM, Belshaw R: Viral mutation rates. / J Virol 2010,84(19):9733鈥?748. CrossRef
    28. Reed G, Jewett PH, Thompson J, Tollefson S, Wright PF: Epidemiology and clinical impact of parainfluenza virus infections in otherwise healthy infants and young children < 5 years old. / J Infect Dis 1997, 175:807鈥?13. CrossRef
    29. Hashimoto S, Matsumoto K, Gon Y, Ichiwata T, Takahashi N, Kobayashi T: Viral infection in asthma. / Allergol Int 2008, 57:21鈥?1. CrossRef
    30. Monto AS: Occurrence of respiratory virus: time, place and person. / Pediatr Infect Dis J 2004,23(1 Suppl):S58鈥?4.
    31. Henrickson KJ, Savatski LL: Antigenic structure, function, and evolution of the hemagglutinin-neuraminidase protein of human parainfluenza virus type 1. / J Infect Dis 1997, 176:867鈥?75. CrossRef
    32. Henrickson KJ, Savatski LL: Two distinct human parainfluenza virus type 1 genotypes detected during the 1991 Milwaukee epidemic. / J Clin Microbiol 1996, 34:695鈥?00.
    33. Alymova IV, Taylor G, Mishin VP, Watanabe M, Murti KG, Boyd K, Chand P, Babu YS, Portner A: Loss of the N-linked glycan at residue 173 of human parainfluenza virus type 1 hemagglutinin-neuraminidase exposes a second receptor-binding site. / J Virol 2008, 82:8400鈥?410. CrossRef
    34. Bousse T, Takimoto T: Mutation at residue 523 creates a second receptor binding site on human parainfluenza virus type 1 hemagglutinin-neuraminidase protein. / J Virol 2006, 80:9009鈥?016. CrossRef
    35. Porotto M, Greengard O, Poltoratskaia N, Horga MA, Moscona A: Human parainfluenza virus type 3 HN-receptor interaction: effect of 4-guanidino-Neu5Ac2en on a neuraminidase-deficient variant. / J Virol 2001, 75:7481鈥?488. CrossRef
    36. Porotto M, Fornabaio M, Kellogg GE, Moscona A: A second receptor binding site on human parainfluenza virus type 3 hemagglutinin-neuraminidase contributes to activation of the fusion mechanism. / J Virol 2007, 81:3216鈥?228. CrossRef
  • 作者单位:Katsumi Mizuta (1)
    Mika Saitoh (2)
    Miho Kobayashi (2)
    Hiroyuki Tsukagoshi (2)
    Yoko Aoki (1)
    Tatsuya Ikeda (1)
    Chieko Abiko (1)
    Noriko Katsushima (3)
    Tsutomu Itagaki (4)
    Masahiro Noda (5)
    Kunihisa Kozawa (2)
    Tadayuki Ahiko (1)
    Hirokazu Kimura (2) (6)

    1. Yamagata Prefectural Institute of Public Health, 1-6-6 Toka-machi, Yamagata-shi, Yamagata, 990-0031, Japan
    2. Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki-machi, Maebashi-shi, Gunma, 371-0052, Japan
    3. Katsushima Pediatric Clinic, 4-4-12 Minamidate, Yamagata-shi, Yamagata, 990-2461, Japan
    4. Yamanobe Pediatric Clinic, 2908-14 Yamanobe-machi, Higashimurayama-gun, Yamagata, 990-0301, Japan
    5. Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
    6. Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo, 208-0011, Japan
  • ISSN:1743-422X
文摘
Background Human parainfluenza virus type 1 (HPIV1) causes various acute respiratory infections (ARI). Hemagglutinin-neuraminidase (HN) glycoprotein of HPIV1 is a major antigen. However, the molecular epidemiology and genetic characteristics of such ARI are not exactly known. Recent studies suggested that a phylogenetic analysis tool, namely the maximum likelihood (ML) method, may be applied to estimate the evolutionary time scale of various viruses. Thus, we conducted detailed genetic analyses including homology analysis, phylogenetic analysis (using both the neighbor joining (NJ) and ML methods), and analysis of the pairwise distances of HN gene in HPIV1 isolated from patients with ARI in Yamagata prefecture, Japan. Results A few substitutions of nucleotides in the second binding site of HN gene were observed among the present isolates. The strains were classified into two major clusters in the phylogenetic tree by the NJ method. Another phylogenetic tree constructed by the ML method showed that the strains diversified in the late 1980s. No positively selected sites were found in the present strains. Moreover, the pairwise distance among the present isolates was relatively short. Conclusions The evolution of HN gene in the present HPIV1 isolates was relatively slow. The ML method may be a useful phylogenetic method to estimate the evolutionary time scale of HPIV and other viruses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700