Analysis of the complete plastid genome of the unicellular red alga Porphyridium purpureum
详细信息    查看全文
  • 作者:Naoyuki Tajima (1) (2)
    Shusei Sato (3)
    Fumito Maruyama (4)
    Ken Kurokawa (2) (5)
    Hiroyuki Ohta (2) (6)
    Satoshi Tabata (7)
    Kohsuke Sekine (1) (2)
    Takashi Moriyama (1) (2)
    Naoki Sato (1) (2)
  • 关键词:Genome rearrangement ; Plastid genome ; Porphyridium purpureum ; Rhodophyta ; rRNA operon
  • 刊名:Journal of Plant Research
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:127
  • 期:3
  • 页码:389-397
  • 全文大小:
  • 参考文献:1. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104-105 CrossRef
    2. Alkatib S, Fleischmann TT, Scharff LB, Bock R (2012) Evolutionary constraints on the plastid tRNA set decoding methionine and isoleucine. Nucleic Acids Res 40:6713-724 CrossRef
    3. Bernard C, Thomas JC, Mazel D, Mousseau A, Castets AM, Tandeau de Marsac N, Dubacq JP (1992) Characterization of the genes encoding phycoerythrin in the red alga / Rhodella violacea: evidence for a splitting of the / rpeB gene by an intron. Proc Natl Acad Sci USA 89:9564-568 CrossRef
    4. Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, Weber APM, Arias MC, Henrissat B, Coutinho PM, Krishnan A, Z?uner S, Morath S, Hilliou F, Egizi A, Perrineau MM, Yoon HS (2013) Genome of the red alga / Porphyridium purpureum. Nat Commun 4:1941 CrossRef
    5. Burki F, Okamoto N, Pombert JF, Keeling PJ (2012) The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc Biol Sci 279:2246-254 CrossRef
    6. Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev 73:203-66 CrossRef
    7. Cech TR (1988) Conserved sequences and structures of group I introns: building an active site for RNA catalysis––a review. Gene 73:259-71 CrossRef
    8. Chan CX, Yang EC, Banerjee T, Yoon HS, Martone PT, Estevez JM, Bhattacharya D (2011) Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Curr Biol 21:328-33 CrossRef
    9. DePriest MS, Bhattacharya D, López-Bautista JM (2013) The plastid genome of the red macroalga / Grateloupia taiwanensis (Halymeniaceae). PLoS One 8:e68246 CrossRef
    10. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792-797 CrossRef
    11. Francis MA, Dudock BS (1982) Nucleotide sequence of a spinach chloroplast isoleucine tRNA. J Biol Chem 257:1195-198
    12. Gl?ckner G, Rosenthal A, Valentin K (2000) The structure and gene repertoire of an ancient red algal plastid genome. J Mol Evol 51:382-90
    13. Hagopian JC, Reis M, Kitajima JP, Bhattacharya D, Oliveria MC (2004) Comparative analysis of the complete plastid genome sequence of the red alga / Gracilaria tenuistipitata var. / liui provides insights into the evolution of Rhodoplasts and their relationship to other plastids. J Mol Evol 59:464-77 CrossRef
    14. Harper JT, Keeling PJ (2003) Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol 20:1730-735 CrossRef
    15. Janou?kovec J, Liu SL, Martone PT, Carré W, Leblanc C, Collén J, Keeling PJ (2013) Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. PLoS One 8:e59001 CrossRef
    16. Jobb G, von Haeseier A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18 CrossRef
    17. Kim E, Archibald JM (2009) Diversity and evolution of plastids and their genomes. The chloroplast––interactions with the environment. In: Aronsson H, Sandelius AS (eds) Plant cell monographs, vol 13. Springer, Berlin, pp 1-9
    18. Konishi T, Shinohara K, Yamada K, Sasaki Y (1996) Acetyl-CoA carboxylase in higher plants: most plants other than gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell Physiol 37:117-22 CrossRef
    19. Lang BF, Laforest MJ, Burger G (2007) Mitochondrial introns: a critical view. Trends Genet 23:119-25 CrossRef
    20. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-948
    21. Livne A, Sukenik A (1990) Acetyl-coenzyme-A carboxylase from the marine prymnesiophyte / Isochrysis galbana. Plant Cell Physiol 31:851-58
    22. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955-64 CrossRef
    23. Nakanishi K, Bonnefond L, Kimura S, Suzuki T, Ishitani R, Nureki O (2009) Structural basis for translational fidelity ensured by transfer RNA lysidine synthetase. Nature 461:1144-148 CrossRef
    24. Neuhaus H, Link G (1987) The chloroplast tRNALys(UUU) gene from mustard ( / Sinapis alba) contains a class II intron potentially coding for a maturase-related polypeptide. Curr Genet 11:251-57 CrossRef
    25. Noguchi H, Taniguchi T, Itoh T (2008) MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res 15:387-96 CrossRef
    26. O’Brien EA, Zhang Y, Wang E, Marie V, Badejoko W, Lang BF, Burger G (2009) GOBASE: an organelle genome database. Nucleic Acids Res 37:D946–D950 CrossRef
    27. Ohta N, Sato N, Nozaki H, Kuroiwa T (1997) Analysis of the cluster of ribosomal protein genes in the plastid genome of a unicellular red alga / Cyanidioschyzon merolae: translocation of the / str cluster as an early event in the Rhodophyte–Chromophyte lineage of plastid evolution. J Mol Evol 45:688-95 CrossRef
    28. Ohta N, Matsuzaki M, Misumi O, Miyagishima S, Nozaki H, Tanaka K, Shin-I T, Kohara Y, Kuroiwa T (2003) Complete sequence and analysis of the plastid genome of the unicellular red alga / Cyanidioschyzon merolae. DNA Res 10:67-7 CrossRef
    29. Okaichi T, Nishio S, Imatomi Y (1982) Collection and mass culture. In: Jpn Fish Soc (ed) In toxic phytoplankton––occurrence, mode of action, and toxins. Koseisya-Koseikaku, Tokyo, pp 22-4
    30. Qiu H, Yang EC, Bhattacharya D, Yoon HS (2012) Ancient gene paralogy may mislead inference of plastid phylogeny. Mol Biol Evol 29:3333-343 CrossRef
    31. Reith M, Munholland J (1995) Complete nucleotide sequence of the / Porphyra purpurea chloroplast genome. Plant Mol Biol Rep 13:333-35 CrossRef
    32. Roessler PG, Ohlrogge JB (1993) Cloning and characterization of the gene that encodes acetyl-coenzyme A carboxylase in the alga / Cyclotella cryptica. J Biol Chem 268:19254-9259
    33. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-574 CrossRef
    34. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16:944-45 CrossRef
    35. Sasaki NV, Sato N (2010) CyanoClust: comparative genome resources of cyanobacteria and plastids. Database 2010:bap025 CrossRef
    36. Sato N (2000) SISEQ: manipulation of multiple sequence and large database files for common platforms. Bioinformatics 16:180-81 CrossRef
    37. Sato N (2009) Gclust: / trans-kingdom classification of proteins using automatic individual threshold setting. Bioinformatics 25:599-05 CrossRef
    38. Soma A, Ikeuchi Y, Kanemasa S, Kobayashi K, Ogasawara N, Ote T, Kato J, Watanabe K, Sekine Y, Suzuki T (2003) An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA. Mol Cell 12:689-98 CrossRef
    39. Stirewalt VL, Michalowski CB, L?ffelhardt W, Bohnert HJ, Bryant DA (1995) Nucleotide sequence of the cyanelle genome from / Cyanophora paradoxa. Plant Mol Biol Rep 13:327-32 CrossRef
    40. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731-739 CrossRef
    41. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-680 CrossRef
    42. Verbruggen H, Maggs CA, Saunders GW, Le Gall L, Yoon HS, De Clerck O (2010) Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life. BMC Evol Biol 10:16 CrossRef
    43. Wang L, Mao Y, Kong F, Li G, Ma F, Zhang B, Sun P, Bi G, Zhang F, Xue H, Cao M (2013) Complete sequence and analysis of plastid genomes of two economically important red algae: / Pyropia haitanensis and / Pyropia yezoensis. PLoS One 8:e65902 CrossRef
    44. Yoon HS, Hackett JD, Pinto G, Bhattacharya D (2002) The single, ancient origin of chromist plastids. Proc Natl Acad Sci USA 99:15507-5512 CrossRef
    45. Yoon HS, Müller KM, Sheath RG, Ott FD, Bhattacharya D (2006) Defining the major lineages of red algae (Rhodophyta). J Phycol 42:482-92 CrossRef
    46. Zimmerly S, Hausner G, Wu XC (2001) Phylogenetic relationships among group II intron ORFs. Nucleic Acids Res 29:1238-250 CrossRef
  • 作者单位:Naoyuki Tajima (1) (2)
    Shusei Sato (3)
    Fumito Maruyama (4)
    Ken Kurokawa (2) (5)
    Hiroyuki Ohta (2) (6)
    Satoshi Tabata (7)
    Kohsuke Sekine (1) (2)
    Takashi Moriyama (1) (2)
    Naoki Sato (1) (2)

    1. Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
    2. JST, CREST, K’s Gobancho, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
    3. Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
    4. Section of Bacterial Pathogenesis, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8510, Japan
    5. Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-E3-10, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
    6. Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B65 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
    7. Kazusa DNA Research Institute, Kazusa-Kamatari 2-6-7, Kisarazu, Chiba Prefecture, 292-0818, Japan
  • ISSN:1618-0860
文摘
We determined the complete nucleotide sequence of the plastid genome of the unicellular marine red alga Porphyridium purpureum strain NIES 2140, belonging to the unsequenced class Porphyridiophyceae. The genome is a circular DNA composed of 217,694?bp with the GC content of 30.3?%. Twenty-nine of the 224 protein-coding genes contain one or multiple intron(s). A group I intron was found in the rpl28 gene, whereas the other introns were group II introns. The P. purpureum plastid genome has one non-coding RNA (ncRNA) gene, 29 tRNA genes and two nonidentical ribosomal RNA operons. One rRNA operon has a tRNAAla(UGC) gene between the rrs and the rrl genes, whereas another has a tRNAIle(GAU) gene. Phylogenetic analyses suggest that the plastids of Heterokontophyta, Cryptophyta and Haptophyta originated from the subphylum Rhodophytina. The order of the genes in the ribosomal protein cluster of the P. purpureum plastid genome differs from that of other Rhodophyta and Chromalveolata. These results suggest that a large-scale rearrangement occurred in the plastid genome of P. purpureum after its separation from other Rhodophyta.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700