Nonlinear viscose flow induced nonlocal vibration and instability of embedded DWCNC via DQM
详细信息    查看全文
文摘
Nonlinear thermo free vibration and instability of viscose fluid-conveying double-walled carbon nanocones (DWCNCs) are studied using Hamilton鈥檚 principle and differential quadrature method (DQM). The small-size effects on bulk viscosity and slip boundary conditions of nanoflow through Knudsen number (Kn) is considered. The nanocone is simulated as a clamped-clamped Euler-Bernoulli鈥檚 beam embedded in an elastic foundation of the Winkler and Pasternak type. The van der Waals (vdW) forces between the inner and outer nanocones are taken into account. The detailed parametric study is conducted, focusing on the combined effects of the nonlocal parameter, apex angles, aspect ratio, temperature change, fluid viscosity, boundary conditions and the elastic medium coefficient on the dimensionless frequency and critical fluid velocity of DWCNCs. The results show that the small-size effect on flow field is remarkable on frequency and critical fluid velocity of DWCNC. Also, the nonlinear frequency and critical flow velocity decrease with increasing the nonlocal parameter and cone semi-vertex angle. The results are in good agreement with the previous researches.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700