A viscoelastic damage model for polycrystalline ice, inspired by Weibull-distributed fiber bundle models. Part I: Constitutive models
详细信息    查看全文
  • 作者:Arne Keller (1)
    Kolumban Hutter (1)
  • 关键词:Polycrystalline ice ; Viscoelastic damage ; Delayed ; elastic response ; Rank ; 4 ; damage variable ; Weibull ; distributed fiber bundle model
  • 刊名:Continuum Mechanics and Thermodynamics
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:26
  • 期:6
  • 页码:879-894
  • 全文大小:437 KB
  • 参考文献:1. Chaboche J.L.: Thermodynamically founded CDM models for creep and other conditions. In: Altenbach, H., Skrzypek, J.J. (eds.) Creep and Damage in Materials and Structures, chap. 5., pp. 209鈥?83. Springer, Wien, NY (1999) CrossRef
    2. Corless R., Gonnet G., Hare D., Jeffrey D., Knuth D.: On the Lambert W-function. Adv. Comput. Math. 5(1), 329鈥?59 (1996) CrossRef
    3. Duddu R., Waisman H.: A temperature dependent creep damage model for polycrystalline ice. Mech. Mater. 46, 23鈥?1 (2012) CrossRef
    4. Greve R.: Kontinuumsmechanik. Springer, Berlin (2003) CrossRef
    5. Hutter K., J枚hnk K.: Continuum Methods of Physical Modeling: Continuum Mechanics, Dimensional Analysis, Turbulence. Springer, Berlin, Germany (2004) CrossRef
    6. Jacka T.H.: The time and strain required for development of minimum strain rates in ice. Cold Regions Sci. Technol. 8(3), 261鈥?68 (1984) CrossRef
    7. Kachanov, L.M.: Time of the rupture process under creep conditions (in Russian). Izv. Akad. Nauk. USSR, Otd. Tekh. Nauk., pp. 26鈥?1 (1957)
    8. Keller, A., Hutter, K.: On the thermodynamic consistency of the equivalence principle in continuum damage mechanics. J. Mech. Phys. Solids 59(5), 1115鈥?120 (2011). doi:10.1016/j.jmps.2011.01.015 . http://www.sciencedirect.com/science/article/B6TXB-523CDY6-2/2/bda2f1b70e114f23d673d5cbff6f7e1d
    9. Keller, A., Hutter, K.: A viscoelastic damage model for polycrystalline ice, inspired by Weibull-distributed fiber bundle models. Part II: Thermodynamics of a rank-4 damage model. Continuum Mech. Thermodyn. doi:10.1007/s00161-014-0335-z
    10. Krajcinovic D.: Damage Mechanics. North-Holland, Amsterdam (1996)
    11. Kun F., Moreno Y., Hidalgo R., Herrmann H.: Creep rupture has two universality classes. EPL (Europhys. Lett.) 63, 347 (2003) CrossRef
    12. Lemaitre J., Lippmann H.: A Course on Damage Mechanics, vol. 2. Springer, Berlin (1996) CrossRef
    13. Mahrenholtz, O., Wu, Z.: Determination of creep damage parameters for polycrystalline ice. Advances in Ice Technology (3rd Int. Conf. Ice Tech./Cambridge USA) pp. 181鈥?92 (1992)
    14. Nemat-Nasser S., Hori M.: Micromechanics: Overall Properties of Heterogeneous Materials, vol. 37. North-Holland, Amsterdam (1993)
    15. Pralong A., Hutter K., Funk M.: Anisotropic damage mechanics for viscoelastic ice. Contin. Mech. Thermodyn. 17(5), 387鈥?08 (2006). doi:10.1007/s00161-005-0002-5 CrossRef
    16. Rist M., Murrell S.: Relationship between creep and fracture of ice. Mech. Creep-brittle Mater. 2, 355鈥?69 (1991) CrossRef
    17. Schulson E., Duval P.: Creep and Fracture of Ice. Cambridge University Press, Cambridge (2009) CrossRef
    18. Sinha N.K.: Crack-enhanced creep in polycrystalline material: strain-rate sensitive strength and deformation of ice. J. Mater. Sci. 23(12), 4415鈥?428 (1988) CrossRef
    19. Skrzypek J.J., Ganczarski A.: Modeling of Material Damage and Failure of Structures. Springer, Berlin (1999) CrossRef
    20. Szyszkowski W., Glockner P.: On a multiaxial constitutive law for ice. Mech. Mater. 5(1), 49鈥?1 (1986) CrossRef
    21. Weiss J., Gay M.: Fracturing of ice under compression creep as revealed by a multifractal analysis. J. Geophys. Res. 103(B10), 24005-24 (1998)
    22. Xiao J., Jordaan I.: Application of damage mechanics to ice failure in compression. Cold Regions Sci. Technol. 24(3), 305鈥?22 (1996) CrossRef
  • 作者单位:Arne Keller (1)
    Kolumban Hutter (1)

    1. Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Z眉rich, Wolfgang-Pauli-Str. 27, 8093, Zurich, Switzerland
  • ISSN:1432-0959
文摘
We consider a constitutive model for polycrystalline ice, which contains delayed-elastic and viscous deformations, and a damage variable. The damage variable is coupled to the delayed-elastic deformation by a fiber bundle ansatz. We construct an isotropic theory, which can be calibrated with experimental data. Furthermore, we generalize the theory to a damage model in terms of rank-four tensors. This general model allows the evolution of anisotropic damage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700