Regularities of varying the dislocation substructure of copper under creep in the magnetic field
详细信息    查看全文
  • 作者:S. V. Konovalov ; D. V. Zagulyaev ; N. G. Yaropolova&#8230
  • 关键词:dislocation substructure ; creep ; magnetic field ; scalar dislocation density ; subgrains
  • 刊名:Russian Journal of Non-Ferrous Metals
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:56
  • 期:4
  • 页码:441-448
  • 全文大小:3,632 KB
  • 参考文献:1.Zagulyaev, D.V., Litvinenko, N.G., Komisarova, I.A., et al., Peculiarities and regularities of the variation in the creep kinetics of copper in the magnetic field, Tsvetn. Met., 2013, no. 4, pp. 74鈥?7.
    2.Urusovskaya, A.A., Al鈥檚hits, V.I., Smirnov, A.E., and Bekkauer, N.N., The influence of magnetic effects on the mechanical properties and real structure of nonmagnetic crystals, Crystallogr. Rep., 2003, vol. 48, no. 5, pp. 796鈥?12.CrossRef
    3.Al鈥檚hits, V.I., Darinskaya, E.V., Koldaeva, M.V., and Petrzhik, E.A., Magnetoplastic effect: basic properties and physical mechanisms, Crystallogr. Rep., 2003, vol. 48, no. 5, pp. 768鈥?95.CrossRef
    4.Golovin, Yu.I., Magnetoplastic effects in solids, Phys. Solid State, 2004, vol. 46, no. 5, pp. 789鈥?24.CrossRef
    5.Zakharov, B.P., Termicheskaya obrabotka metallov (Thermal Treatment of Metals), Sverdlovsk: Mashgiz, 1957.
    6.Konovalov, S.V., Danilov, V.I., Zuev, L.B., et al., Automated installation for the registration and analysis of creep of metals and alloys, Zavod. Lab. Diagnost. Mater., 2007, no. 8, pp. 64鈥?6.
    7.Druzhilov, A.S., Konovalov, S.V., Filip鈥檈v, R.A., et al., Investigatory complex of creep, Zagot. Proizvod. Mashinostr., 2007, no. 2, pp. 25鈥?7.
    8. Fractography and Atlas of Fractographs, Fellows, J.A. and Boyer, H.E., Eds., Ohio: ASM, 1974.
    9.Utevskii, L.M., Difraktsionnaya elektronnaya mikroskopiya v metallovedenii (Diffraction Electron Microscopy in Physical Metallurgy), Moscow: Metallurgiya, 1973.
    10.Mitropol鈥檚kii, A.K., Tekhnika statisticheskikh vychislenii (Statistical Calculation Technique), Moscow: Fizmatlit, 1961.
  • 作者单位:S. V. Konovalov (1)
    D. V. Zagulyaev (1)
    N. G. Yaropolova (1)
    I. A. Komissarova (1)
    Yu. F. Ivanov (2)
    V. E. Gromov (1)

    1. Siberian State Industrial University, ul. Kirova 42, Novokuznetsk, 654007, Russia
    2. Institute for High-Current Electronics, Siberian Branch, Russian Academy of Sciences, pr. Akademicheskii 2/3, Tomsk, 634000, Russia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Metallic Materials
    Russian Library of Science
  • 出版者:Allerton Press, Inc. distributed exclusively by Springer Science+Business Media LLC
  • ISSN:1934-970X
文摘
The object of the study is polycrystalline copper of M006 brand. The dislocation substructure (DSS), which is formed in copper under the destruction in creep conditions in a magnetic field of 0.35 T, was studied by diffraction electron microscopy. The substructure of the initial state of copper is characterized by the presence of the following DSS types: chaotically distributed dislocations (56%), a cellular substructure of various degrees of perfection (36%), a netlike substructure (5%), a band substructure (3%), dislocation bundles (3%), and broken subboundaries (2%). It is established that the peculiarities in the quantitative ratio of DSS types manifest themselves under destruction in the magnetic field. Notably, the main DSS type near the destruction zone in copper deformed under creep conditions is the subgrain structure. The application of the magnetic field leads to a decrease in the relative content of the subgrain structure in copper by almost a factor of 2. It is shown that the magnetic-field effect retards the transformation rate of the dislocation substructure under creep of copper, which leads to an increase in strength characteristics. Keywords dislocation substructure creep magnetic field scalar dislocation density subgrains

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700