An analytical model of rotary ultrasonic milling
详细信息    查看全文
  • 作者:Erich Bertsche (1)
    Kornel Ehmann (2)
    Kostyantyn Malukhin (2)
  • 关键词:Rotary ultrasonic milling ; Advanced ceramics ; Surface finish ; Theoretical cutting forces ; Experimental verification
  • 刊名:The International Journal of Advanced Manufacturing Technology
  • 出版年:2013
  • 出版时间:12 - April 2013
  • 年:2013
  • 卷:65
  • 期:9
  • 页码:1705-1720
  • 全文大小:1006KB
  • 参考文献:1. Brinksmeier E, Aurich JC, Govekar E, Heinzela C, Hoffmeister H-W, Klocke F, Peters J, Rentsch R, Stephensong DJ, Uhlmannh E, Weinerti K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. CIRP Ann Manuf Technol 55(2):667鈥?96 CrossRef
    2. Marinescu ID, Hitchiner M, Uhlmann E, Rowe WB, Inasaki I (2006) Handbook of machining with grinding wheels. CRC Press, Boca Raton CrossRef
    3. Thoe TB, Aspinwall DK, Wise MLH (1998) Review on ultrasonic machining. Int J Mach Tool Manuf 38(4):239鈥?55 CrossRef
    4. Bender BG (1966) Method of making semiconductor devices. USA Patent 3229348, Hughes Aircraft Company, United States
    5. Singh R, Khamba JS (2007) Investigation for ultrasonic machining of titanium and its alloys. J Mater Process Technol 183(2鈥?):363鈥?67 CrossRef
    6. Dvivedi A, Kumar P (2007) Surface quality evaluation in ultrasonic drilling through the Taguchi technique. Int J Adv Manuf Technol 34(1):131鈥?40 CrossRef
    7. Komaraiah M, Reddy PN (1991) Rotary ultrasonic machining鈥攁 new cutting process and its performance. Int J Prod Res 29(11):2177鈥?187 CrossRef
    8. Prabhakar D (1992) Machining of advanced ceramic materials using rotary ultrasonic machining process. University of Illinois at Urbana-Champaign, Champaign
    9. Uhlmann E, Spur G (1998) Surface formation in creep feed grinding of advanced ceramics with and without ultrasonic assistance. CIRP Ann Manuf Technol 47(1):249鈥?52 CrossRef
    10. Spur G, Uhlmann E, Holl S-E, Daus NA (1999) Influences on surface and subsurface during ultrasonic assisted grinding of advanced ceramics. Proceedings of the 14th Annual Meeting, the American Society for Precision Engineering. Monterey, CA, USA
    11. Zhang P, Fan X, Miller MH (2004) Improving grinding wheel performance with vibration assistance and segmented wheels. Proceedings of the 2004 NSF Design, Service and Manufacturing Grantees and Research Conference
    12. Spurr G, Holl SE (1996) Ultrasonic assisted grinding of ceramics. J Mater Process Technol 62(4):287鈥?93 CrossRef
    13. Hu P, Zhang JM, Treadwell C (2002) Modeling of material removal rate in rotary ultrasonic machining: designed experiments. J Mater Process Technol 129(1鈥?):339鈥?44 CrossRef
    14. Daus N-A (2004) Ultraschallunterst眉tztes Quer-Seiten-Schleifen Berichte aus dem Produktionstechnischen Zentrum. Fraunhofer IRB Verlag, Berlin
    15. Hocheng H, Tai NH, Liu CS (2000) Assessment of ultrasonic drilling of C/SiC composite material. Compos A Appl Sci Manuf 31(2):133鈥?42 CrossRef
    16. Li ZC, Jiao Y, Deines TW, Pei ZJ, Treadwell C (2005) Rotary ultrasonic machining of ceramic matrix composites: feasibility study and designed experiments. Int J Mach Tool Manuf 45(12鈥?3):1402鈥?411 CrossRef
    17. Jianxin D, Taichiu L (2002) Ultrasonic machining of alumina-based ceramic composites. J Eur Ceram Soc 22(8):1235鈥?241 CrossRef
    18. Li ZC, Pei ZJ, Sisco T, Micale AC, Treadwell C (2007) Experimental study on rotary ultrasonic machining of graphite/epoxy panel. Proceedings of ASPE Spring Topical Meeting
    19. Jiao Y, Liu WJ, Pei ZJ (2005) Study on edge chipping in rotary ultrasonic machining of ceramics: an integration of designed experiments and finite element method analysis. J Manuf Sci Eng 127(4):752鈥?58 CrossRef
    20. Churi NJ, Pei ZJ, Treadwell C (2006) Rotary ultrasonic machining of titanium alloy: effects of machining variables. Mach Sci Technol 10:301鈥?21 CrossRef
    21. Neugebauer R, Stoll A (2004) Ultrasonic application in drilling. J Mater Process Technol 149(1鈥?):633鈥?39 CrossRef
    22. Pei ZJ, Prabhakar D, Ferreira PM (1995) A mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining. Trans ASME J Eng Ind 117(2):142鈥?51 CrossRef
    23. Pei ZJ, Ferreira PM, Haselkorn M (1995) Plastic flow in rotary ultrasonic machining of ceramics. J Mater Process Technol 48(1鈥?):771鈥?77 CrossRef
    24. Pei ZJ, Ferreira PM (1998) Modeling of ductile-mode material removal in rotary ultrasonic machining. Int J Mach Tool Manuf 38(10鈥?1):1399鈥?418 CrossRef
    25. Pei ZJ, Ferreira PM, Kapoor SG, Haselkorn M (1995) Rotary ultrasonic machining for face milling of ceramics. Int J Mach Tool Manuf 35(7):1033鈥?046 CrossRef
    26. Pei ZJ, Ferreira PM (1999) An experimental investigation of rotary ultrasonic face milling. Int J Mach Tool Manuf 39(8):1327鈥?344 CrossRef
    27. Uhlmann E, Daus N (2000) Ultrasonic assisted face grinding and cross-periphal grinding of ceramics. Proceedings of the 7th International Symposium Ceramics Materials and Components for Engines
    28. Sauer H (2004) Tool with an oscillating head, US Patent Application 20080041604
    29. Meyer J (2009) Ultrasonic machining improves productivity. Manufacturing Engineering
    30. Fritsch A (1997) Schleifen von cermets. University of Hannover
    31. Malkin S (1989) Grinding technology: theory and applications of machining with abrasives. American Society of Manufacturing Engineers, Dearborn
    32. Toenshoff HK (1995) Spanen-Grundlagen. Springer, Berlin
    33. Prospect WC (2002) Diamantwerkzeuge zur Bearbeitung feinoptischer, brillen optischer und technischer Bauelemente
    34. Collins JA (1981) Failure of materials in mechanical design. Wiley, New York
    35. Corman GS, Luthra KL (2005) Silicon melt infiltrated ceramic composites (HiPerComp鈩?. In: Handbook of ceramic composites. Springer, New York, pp. 99鈥?15
  • 作者单位:Erich Bertsche (1)
    Kornel Ehmann (2)
    Kostyantyn Malukhin (2)

    1. Bertsche Engineering Corp., 711 Dartmouth Lane, Buffalo Grove, IL, 60089, USA
    2. Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
  • ISSN:1433-3015
文摘
Rotary ultrasonic machining is currently being used as a manufacturing method for advanced ceramic materials, but its complexity has hindered its acceptance in industry. For this technology to gain wider acceptance, it must first be scientifically better understood. The majority of published rotary ultrasonic machining (RUM) papers studied the effect of RUM process parameters on machining performance and removal mechanisms for drilling of circular holes. In industries such as aerospace, the production of advanced turbine components requires machining of complex 3D features using milling strategies. The objective of this paper will be to present a new physical model based on rotary ultrasonic milling which will help provide a better scientific understanding of the process. This will be accomplished by first modeling the macro kinematics between the tool and material followed by the modeling of micro kinematics between the individual diamond grains and the material. In addition, a force model for predicting machining process forces will also be introduced and validated based on a set of experiments. The physical models will help determine the relationships between input parameters, cutting parameters, and process output parameters for rotary ultrasonic milling.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700