Effect of the electron-accepting centre and solubilising substituents on the redox, spectroscopic and electroluminescent properties of four oxadiazoles and a triazole disubstituted with bithiophene
详细信息    查看全文
  • 作者:Anastasia S. Kostyuchenko ; Gabriela Wiosna-Salyga…
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:51
  • 期:5
  • 页码:2274-2282
  • 全文大小:934 KB
  • 参考文献:1.Balan A, Gunbas G, Durmus A, Toppare L (2008) Donor-acceptor polymer with benzotriazole moiety: enhancing the electrochromic properties of the “donor unit”. Chem Mater 20:7510–7513. doi:10.​1021/​cm802937x CrossRef
    2.Wang C, Dong H, Hu W, Liu Y, Zhu D (2012) Semiconducting π-conjugated systems in field-effect transistors: a material Odyssey of organic electronics. Chem Rev 112:2208–2267. doi:10.​1021/​cr100380z CrossRef
    3.Bujak P, Kulszewicz-Bajer I, Zagorska M, Maurel V, Wielgus I, Pron A (2013) Polymers for electronics and spintronics. Chem Soc Rev 42:8895–8999. doi:10.​1039/​c3cs60257e CrossRef
    4.Zhao Y, Guo Y, Liu Y (2013) 25th anniversary article: recent advances in n-type and ambipolar organic field-effect transistors. Adv Mater 25:5372–5391. doi:10.​1002/​adma.​201302315 CrossRef
    5.Pron A, Gawrys P, Zagorska M, Djurado D, Demadrille R (2010) Electroactive materials for organic electronics: preparation strategies, structural aspects and characterization techniques. Chem Soc Rev 39:2577–2632. doi:10.​1039/​b907999h CrossRef
    6.Cheng Y-J, Yang S-H, Hsu C-S (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868–5923. doi:10.​1021/​cr900182s CrossRef
    7.Hains AW, Liang Z, Woodhouse MA, Gregg BA (2010) Molecular semiconductors in organic photovoltaic cells. Chem Rev 110:6689–6735. doi:10.​1021/​cr9002984 CrossRef
    8.Mishra A, Fischer MKR, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48:2474–2499. doi:10.​1002/​anie.​200804709 CrossRef
    9.Fang Z, Eshbaugh AA, Schanze KS (2011) Low-bandgap donor-acceptor conjugated polymer sensitizers for dye-sensitized solar cells. J Am Chem Soc 133:3063–3069. doi:10.​1021/​ja109926k CrossRef
    10.Zhu Y, Kulkarni AP, Wu P-T, Jenekhe SA (2008) New ambipolar organic semiconductors. 1. Synthesis, single-crystal structures, redox properties, and photophysics of phenoxazine-based donor-acceptor molecules. Chem Mater 20:4200–4211. doi:10.​1021/​cm702212w CrossRef
    11.Kulkarni AP, Zhu Y, Babel A, Wu P-T, Jenekhe SA (2008) New ambipolar organic semiconductors. 2. Effects of electron acceptor strength on intramolecular charge transfer photophysics, highly efficient electroluminescence, and field-effect charge transport of phenoxazine-based donor - acceptor materials. Chem Mater 20:4212–4223. doi:10.​1021/​cm7022136 CrossRef
    12.An B-K, Gierschner J, Park SY (2012) π-conjugated cyanostilbene derivatives: a unique self-assembly motif for molecular nanostructures with enhanced emission and transport. Acc Chem Res 45:544–554. doi:10.​1021/​ar2001952 CrossRef
    13.Clavier G, Audebert P (2010) s-tetrazines as building blocks for new functional molecules and molecular materials. Chem Rev 110:3299–3314. doi:10.​1021/​cr900357e CrossRef
    14.Audebert P, Sadki S, Miomandre F, Clavier G, Claude Vernieres M, Saoud M, Hapiot P (2004) Synthesis of new substituted tetrazines: electrochemical and spectroscopic properties. New J Chem 28:387–392. doi:10.​1039/​b310737j CrossRef
    15.Kurach E, Djurado D, Rimarčik J, Kornet A, Wlostowski M, Lukeš V, Pecaut J, Zagorska M, Pron A (2011) Effect of substituents on redox, spectroscopic and structural properties of conjugated diaryltetrazines—a combined experimental and theoretical study. Phys Chem Chem Phys 13:2690–2700. doi:10.​1039/​c0cp01553a CrossRef
    16.McCairn MC, Kreouzis T, Turner ML (2010) Microwave accelerated synthesis and evaluation of conjugated oligomers based on 2,5-di-thiophene-[1,3,4]thiadiazole. J Mater Chem 20:1999–2006. doi:10.​1039/​b922714h CrossRef
    17.Kurach E, Kotwica K, Zapala J, Knor M, Nowakowski R, Djurado D, Toman P, Pfleger J, Zagorska M, Pron A (2013) Semiconducting alkyl derivatives of 2,5-bis(2,2′-bithiophene-5-yl)-1,3,4-thiadiazole—effect of the substituent position on the spectroscopic, electrochemical, and structural properties. J Phys Chem C 117:15316–15326. doi:10.​1021/​jp4033832 CrossRef
    18.Kurowska A, Kostyuchenko AS, Zassowski P, Skorka L, Yurpalov VL, Fisyuk AS, Pron A, Domagala W (2014) Symmetrically disubstituted bithiophene derivatives of 1,3,4-oxadiazole, 1,3,4-thiadiazole, and 1,2,4-triazole—spectroscopic, electrochemical, and spectroelectrochemical properties. J Phys Chem C 118:25176–25189. doi:10.​1021/​jp507838c CrossRef
    19.Fisyuk AS, Demadrille R, Querner C, Zagorska M, Bleuse J, Pron A (2005) Mixed alkylthiophene-based heterocyclic polymers containing oxadiazole units via electrochemical polymerisation: spectroscopic, electrochemical and spectroelectrochemical properties. New J Chem 29:707–713. doi:10.​1039/​b415587d CrossRef
    20.Kostyuchenko AS, Averkov AM, Fisyuk AS (2014) A simple and efficient synthesis of substituted 2,2′-bithiophene and 2,2′:5′,2″-terthiophene. Org Lett 16:1833–1835. doi:10.​1021/​ol500356w CrossRef
    21.Kostyuchenko AS, Yurpalov VL, Kurowska A, Domagala W, Pron A, Fisyuk AS (2014) Synthesis of new, highly luminescent bis(2,2′-bithiophen-5-yl) substituted 1,3,4-oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole. Beilstein J Org Chem 10:1596–1602. doi:10.​3762/​bjoc.​10.​165 CrossRef
    22.Wiosna-Salyga G, Gora M, Zagorska M, Toman P, Luszczynska B, Pfleger J, Glowacki I, Ulanski J, Mieczkowski J, Pron A (2015) Diketopyrrolopyrroles disubstituted with alkylated thiophenes: effect of the donor unit size and solubilizing substituents on their redox, photo- and electroluminescence properties. RSC Adv 5:59616–59629. doi:10.​1039/​c5ra06811h CrossRef
    23.Sun Y, Zhang C, Dai B, Lin B, Yang H, Zhang X, Guo L, Liu Y (2015) Side chain engineering and conjugation enhancement of benzodithiophene and phenanthrenequnioxaline based conjugated polymers for photovoltaic devices. J Polym Sci A 53:1915–1926. doi:10.​1002/​pola.​27643 CrossRef
    24.Mo D, Zhen S, Xu J, Zhou W, Lu B, Zhang G, Wang Z, Zhang S, Feng Z (2014) Alkyl chain engineering in the hybrid bithiophene-3,4-ethylenedioxythiophene: synthesis, electronic properties, and electropolymerisation. Synth Met 198:19–30. doi:10.​1016/​j.​synthmet.​2014.​10.​003 CrossRef
    25.Grykien R, Luszczynska B, Glowacki I, Kurach E, Rybakiewicz R, Kotwica K, Zagorska M, Pron A, Tassini P, Maglione MG, De Girolamo Del Mauro A, Fasolino T, Rega R, Pandolfi G, Minarini C, Aprano S (2014) Photo- and electroluminescent properties of bithiophene disubstituted 1,3,4-thiadiazoles and their application as active components in organic light emitting diodes. Opt Mater 37:193–199. doi:10.​1016/​j.​optmat.​2014.​05.​023 CrossRef
    26.Rybakiewicz R, Gawrys P, Tsikritzis D, Emmanouil K, Kennou S, Zagorska M, Pron A (2013) Electronic properties of semiconducting naphthalene bisimide derivatives—ultraviolet photoelectron spectroscopy versus electrochemistry. Electrochim Acta 96:13–17. doi:10.​1016/​j.​electacta.​2013.​02.​041 CrossRef
    27.Janssen RAJ, Smilowitz L, Sariciftci NS, Moses D (1994) Triplet-state photoexcitations of oligothiophene films and solutions. J Chem Phys 101:1787–1798. doi:10.​1063/​1.​467757 CrossRef
    28.Berlman IB (1971) Handbook of fluorescence spectra of aromatic molecules, 2nd edn. Academic Press, New York, p 70
    29.Knyazhanskii MI, Gilyanovskii PV, Osipov OA (1977) Luminescence and photochemistry of azoles (review). Chem Heterocycl Compd 13:1160–1177. doi:10.​1007/​bf00475936 CrossRef
    30.Oster G, Nishijima Y (1956) Fluorescence and internal rotation: their dependence on viscosity of the medium. J Am Chem Soc 78:1581–1584. doi:10.​1021/​ja01589a021 CrossRef
    31.Bondarev SL, Knyukshto VN, Masalov NV, Dzilinski K (2001) Viscosity effect on the fluorescent and conformational properties of 2-N-piperidino-5-(2′,2′-dicyanovinyl)thiophene. Opt Spectrosc 91:59–65. doi:10.​1134/​1.​1388325 CrossRef
    32.Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl Phys Lett 75:4–6. doi:10.​1063/​1.​124258 CrossRef
  • 作者单位:Anastasia S. Kostyuchenko (1) (2)
    Gabriela Wiosna-Salyga (3)
    Aleksandra Kurowska (4)
    Malgorzata Zagorska (5)
    Beata Luszczynska (3)
    Remigiusz Grykien (3)
    Ireneusz Glowacki (3)
    Alexander S. Fisyuk (1) (2)
    Wojciech Domagala (4)
    Adam Pron (5)

    1. Department of Organic Chemistry, Omsk F. M. Dostoevsky State University, Mira av. 55A, Omsk, Russian Federation, 644077
    2. Laboratory of New Organic Materials, Omsk State Technical University, Mira av. 11, Omsk, Russian Federation, 644050
    3. Department of Molecular Physics, Technical University of Lodz, Zeromskiego 116, 90-924, Lodz, Poland
    4. Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Marcina Strzody 9, 44-100, Gliwice, Poland
    5. Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
Five and six heterocycle ring assemblies, comprising triazole or oxadiazole acceptor (A) units and thiophene or alkylthiophene donor (D) units in a DDADD and DDAADD arrangement, have been synthesised and characterised by spectroscopic and electrochemical means. It is demonstrated that the replacement of a weaker acceptor (triazole) by a stronger one (oxadiazole) in DDADD compounds results in lowering of the frontier molecular energy gap by 70 meV from 2.94 to 2.87 eV. For oxadiazole-centred compounds these gaps can be further lowered by increasing the number of A units and alkyl solubilising substituents, down to 2.76 eV for the DDAADD compound containing four alkyl pendants. The photoluminescence quantum yield exceeds 50 % for DDADD compounds and reaches 78 % for DDAADD ones. All compounds, when dispersed in a blend consisting of 70 % poly(vinylcarbazole) (PVK) and 30 % of 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD) (host–guest configuration), demonstrate light-emitting diode behaviour, affording blue, tuneable emission with luminances reaching 120 cd m−2 and luminous efficiencies of 0.12 cd A−1 for non-optimised devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700