Comparison of thermal, mechanical and thermomechanical properties of poly(lactic acid) injection-molded into epoxy-based Rapid Prototyped (PolyJet) and conventional steel mold
详细信息    查看全文
  • 作者:T. Tábi ; N. K. Kovács ; I. E. Sajó…
  • 关键词:Injection molding ; Biodegradable polymer ; Nucleating agents ; Additive manufacturing ; Rapid prototyping
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:123
  • 期:1
  • 页码:349-361
  • 全文大小:2,199 KB
  • 参考文献:1.Wholers T. Wholers report 2012. Colorado: Wohlers Associates; 2012.
    2.Gebhardt A. Understanding additive manufacturing. Munich: Carl Hanser Verlag; 2011.CrossRef
    3.Hopkinson N, Dickens P. A comparison between stereolithography and aluminium injection moulding tooling. Rapid Prototyping J. 2000;6:253–8.CrossRef
    4.Colton JS, Lebaut Y. Thermal effects on stereolithography injection mold inserts. Polym Eng Sci. 2000;40:1360–8.CrossRef
    5.Flieger M, Kantorová M, Prell A, Rezanka T, Votruba J. Biodegradable plastics from renewable resources. Folia Microbiol. 2003;48:27–44.CrossRef
    6.Imre B, Renner K, Pukánszky B. Interactions, structure and properties in poly(lactic acid)/thermoplastic polymer blends. Express Polym Lett. 2014;8:2–14.CrossRef
    7.Kovács JG, Nagy P, Oroszlány Á, Pavlik A, Hidas P. Testing of prototype interference screw for ACL reconstruction in porcine femurs. Biomech Hung. 2012;4:7–15.
    8.Oroszlány Á, Kovács JG. Gate type influence on thermal characteristics of injection molded biodegradable interference screws for ACL reconstruction. Int Commun Heat Mass. 2010;37:766–9.CrossRef
    9.Karger-Kocsis J, Kéki S. Biodegradable polyester-based shape memory polymers: concepts of (supra)molecular architecturing. Express Polym Lett. 2014;8:397–412.CrossRef
    10.Kimble LD, Bhattacharrya D, Fakirov S. Biodegradable microfibrillar polymer-polymer composites from poly(L-lactic acid)/poly(glycolic acid). Express Polym Lett. 2015;9:300–7.CrossRef
    11.Auras R, Lim LT, Selke SEM, Tsuji H. Poly(lactic acid) synthesis, structures, properties, processing and applications. 1st ed. Hoboken: Wiley; 2010.CrossRef
    12.Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33:820–52.CrossRef
    13.Tábi T, Sajó IE, Szabó F, Luyt AS, Kovács JG. Crystalline structure of annealed polylactic acid and its relation to processing. Express Polym Lett. 2010;4:659–68.CrossRef
    14.Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebre JM, Seguela R. Crystallization behavior or carbon nanotube-Polylactide nanocomposites. Macromolecules. 2011;44:6496–502.CrossRef
    15.Pengju P, Zhichao L, Amin C, Yoshio I. Layered metal phosphonate reinforced poly(L-lactide) composites with a highly enhanced crystallization rate. Appl Mater Interfaces. 2009;1:402–11.CrossRef
    16.Shusheng W, Changyu H, Junjia B, Lijing H, Xuemei W, Lisong D. Morphology, crystallisation and enzymatic degradation of poly(L-lactide) nucleated using layered metal phosphonates. Polym Int. 2011;60:284–95.CrossRef
    17.Ping S, Guangyi C, Zhiyong W, Ying C, Wanxi Z, Jicai L. Rapid crystallization of poly(L-lactic acid) induced by a nanoscaled zinc citrate complex as nucleating agent. Polymer. 2012;53:4300–9.CrossRef
    18.Harris AM, Lee EC. Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci. 2008;107:2246–55.CrossRef
    19.Battegazzore D, Bocchini S, Frache A. Crystallisation kinetics of poly(lactic acid)-talc composites. Express Polym Lett. 2011;5:849–58.CrossRef
    20.Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E. Physical and mechanical properties of Poly(L-lactic acid) nucleated by dibenzoylhydrazide compound. J Appl Polym Sci. 2007;103:244–50.CrossRef
    21.Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E. Nucleating agent for Poly(L-lactic acid)—an optimization of chemical structure of hydrazide compound for advanced nucleation ability. J Appl Polym Sci. 2007;103:198–203.CrossRef
    22.Zhaobin Q, Zhisheng L. Effect of orotic acid on the crystallisation kinetics and morphology of biodegradable poly(L-lactide) as an efficient nucleating agent. Ind Eng Chem Res. 2011;50:12299–303.CrossRef
    23.Nam JY, Okamoto M, Okamoto H, Nakano M, Usuki A, Matsuda M. Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer. 2006;47:1340–7.CrossRef
    24.Wen L, Xin Z. Effect of a novel nucleating agent on isothermal crystallisation of poly(L-lactic acid). Chin J Chem Eng. 2010;18:899–904.CrossRef
    25.Kulinski Z, Piorkowska E. Crystallisation, structure and properties of plasticized poly(L-lactide). Polymer. 2005;46:10290–300.CrossRef
    26.Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallisation. Prog Polym Sci. 2012;37:1657–77.CrossRef
    27.Li H, Huneault MA. Effect of nucleation and plasticization on the crystallisation of poly(lactic acid). Polymer. 2007;48:6855–66.CrossRef
    28.Tábi T, Suplicz A, Czigány T, Kovács JG. Thermal and mechanical analysis of injection moulded poly(lactic acid) filled with poly(ethylene glycol) and talc. J Therm Anal Calorim. 2014;118:1419–30.CrossRef
    29.Tsuji H, Takai H, Saha SK. Isothermal and non-isothermal crystallisation behaviour of poly(L-lactic acid): effects of stereocomplex as nucleating agent. Polymer. 2006;47:3826–37.CrossRef
    30.Rahman N, Kawai T, Matsuba G, Nishida K, Kanaya T, Watanabe H, Okamoto H, Kato M, Usuki A, Matsuda M, Nakajima K, Honma N. Effect of Polylactide stereocomplex on the crystallization behavior of Poly(L-lactic acid). Macromolecules. 2009;42:4739–45.CrossRef
    31.Ozcelik B, Ozbay A, Demibras E. Influence of injection parameters and mold materials on mechanical properties of ABS in plastic injection molding. Int Commun Heat Mass. 2014;37:1359–65.CrossRef
    32.Kovács JG, Bercsey T. Influence of mold properties on the quality of injection molded parts. Period Polytech Mech. 2005;49:115–22.
    33.Kovács JG, Suplicz A. Thermally conductive polymer compounds for injection moulding: the synergetic effect of hexagonal boron-nitride and talc. J Reinf Plast Comp. 2013;32:1234–40.CrossRef
    34.Cai H, Dave V, Gross RA, McCarthy SP. Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid). J Polym Sci Pol Phys. 1998;34:2701–8.
  • 作者单位:T. Tábi (1) (2)
    N. K. Kovács (2)
    I. E. Sajó (3)
    T. Czigány (1) (2)
    S. Hajba (2)
    J. G. Kovács (2)

    1. MTA–BME Research Group for Composite Science and Technology, Muegyetem rkp. 3, 1111, Budapest, Hungary
    2. Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Muegyetem rkp. 3, 1111, Budapest, Hungary
    3. Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, 7624, Pécs, Hungary
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
The number of renewable-resource-based and inherently biodegradable poly(lactic acid) (PLA) products is growing in the market, resulting in an increasing demand to produce even small series of injection-molded PLA prototypes for testing purposes by using rapid molds. In our research, it was first demonstrated that it is possible to use epoxy-based molds made by PolyJet Rapid Prototyping technology for conventional injection molding to produce small series of PLA parts. The effect of mold material, namely conventional steel mold and epoxy-based PolyJet mold, was analyzed on the thermal and mechanical properties of the injection-molded products. PLA was used with no, moderate and high nucleating agent contents [talc and poly(ethylene glycol)] to obtain a model material with slow, moderate and high crystallization rates, respectively. It was demonstrated that the mold used and thus the thermal conductivity of the mold had significant effect on the crystallinity of the PLA parts and thus on its mechanical and thermomechanical properties. Finally, it was found that it is possible to mimic the thermomechanical properties of nucleated PLA injected into hot mold used for mass production by injecting it into the epoxy-based PolyJet mold used for small series production.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700