How to Find the Holonomy Algebra of a Lorentzian Manifold
详细信息    查看全文
  • 作者:Anton S. Galaev (1)

    1. Faculty of Science
    ; University of Hradec Kr谩lov茅 ; Jana Koziny 1237 ; 500 03 ; Hradec Kr谩lov茅 ; Czech Republic
  • 关键词:53C29 ; 53C25 ; 53C50 ; 81T30 ; Lorentzian manifold ; holonomy group ; holonomy algebra ; de Rham ; Wu decomposition
  • 刊名:Letters in Mathematical Physics
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:105
  • 期:2
  • 页码:199-219
  • 全文大小:256 KB
  • 参考文献:1. Anderson I.M., Torre C.G.: New symbolic tools for differential geometry, gravitation, and field theory. J. Math. Phys. 53(1), 013鈥?11 (12聽pp) (2012)
    2. Baum, H.: Conformal Killing spinors and the holonomy problem in Lorentzian geometry鈥攁 survey of new results. In: Symmetries and overdetermined systems of partial differential equations, 251鈥?64. IMA Vol. Math. Appl., 144. Springer, New York (2008)
    3. Baum H., M眉ller O.: Codazzi spinors and globally hyperbolic manifolds with special holonomy. Math. Z. 258(1), 185鈥?11 (2008) CrossRef
    4. Baum H., L盲rz K., Leistner T.: On the full holonomy group of special Lorentzian manifolds. Math. Z. 277(3鈥?), 797鈥?28 (2014) CrossRef
    5. Bazaikin Y.V.: Globally hyperbolic Lorentzian spaces with special holonomy groups. Siber. Math. J. 50(4), 567鈥?79 (2009) CrossRef
    6. B茅rard Bergery L., Ikemakhen A.: On the holonomy of Lorentzian manifolds. Proc. symposia Pure Math. 54, 27鈥?0 (1993) CrossRef
    7. Besse, A.L.: Einstein manifolds. Springer, Berlin (1987)
    8. Boubel, C.: On the holonomy of Lorentzian metrics. Ann. Fac. Sci. Toulouse Math. (6) 16(3), 427鈥?75 (2007)
    9. Brannlund, J., Coley, A., Hervik, S.: Supersymmetry, holonomy and Kundt spacetimes. Class. Quantum Grav. 25, 195007 (10聽pp) (2008)
    10. Bryant, R.L.: Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor. S茅min. Congr., 4, Soc. Math. France, Paris, pp. 53鈥?4 (2000)
    11. Cecotti, S.: A geometric introduction to F-theory, Lectures Notes, SISSA, 2010
    12. Cohen, A.G., Glashow, S.L.: Very special relativity. Phys. Rev. Lett. 97(2), 021601 (3聽pp) (2006)
    13. Coley, A., Gibbons, G.W., Hervik, S., Pope, C.N.: Metrics with vanishing quantum corrections. Class. Quantum Grav. 25, 145017 (17聽pp) (2008)
    14. Cveti膷, M., Gibbons, G.W., L眉, H., Pope, C.N.: Special holonomy spaces and M-theory. Unity from duality: gravity, gauge theory and strings (Les Houches, 2001), 523鈥?45, NATO Adv. Study Inst., EDP Sci., Les Ulis, 2003
    15. Galaev A.S.: The spaces of curvature tensors for holonomy algebras of Lorentzian manifolds. Diff. Geom. Appl. 22, 1鈥?8 (2005) CrossRef
    16. Galaev A.S.: Metrics that realize all Lorentzian holonomy algebras. Int. J. Geom. Methods Mod. Phys. 3(5鈥?), 1025鈥?045 (2006) CrossRef
    17. Galaev, A.S., Leistner, T.: Holonomy groups of Lorentzian manifolds: classification, examples, and applications. In: Recent developments in pseudo-Riemannian geometry, pp. 53鈥?6. ESI Lect. Math. Phys., Eur. Math. Soc., Z眉rich (2008)
    18. Galaev A.S.: One component of the curvature tensor of a Lorentzian manifold. J. Geom. Phys. 60, 962鈥?71 (2010) CrossRef
    19. Galaev, A.S., Leistner, T.: On the local structure of Lorentzian Einstein manifolds with parallel distribution of null lines. Class. Quantum Grav. 27, 225003 (16聽pp) (2010)
    20. Galaev, A.S.: On the de Rham-Wu decomposition for Riemannian and Lorentzian manifolds. Class. Quantum Grav. 31, 135007 (13聽pp) (2014)
    21. Gibbons G.W.: Holonomy old and new. Prog. Theor. Phys. Suppl. 177, 33鈥?1 (2009) CrossRef
    22. Gibbons, G.W., Pope, C.N.: Time-dependent multi-centre solutions from new metrics with holonomy Sim ( / n 鈭?2). Class. Quantum Grav. 25, 125015 (21聽pp) (2008)
    23. Goldberg J.N., Kerr R.P.: Some applications of the infinitesimal-holonomy group to the Petrov classification of Einstein spaces. J. Math. Phys. 2, 327鈥?32 (1961) CrossRef
    24. Grover, J., et聽al.: Gauduchon-Tod structures, Sim holonomy and de Sitter supergravity. J. High Energy Phys. 7, 069 (20聽pp) (2009)
    25. Gubser, S.S.: Special holonomy in string theory and M-theory, Strings, branes and extra dimensions. TASI 2001, pp. 197鈥?33. World Sci. Publ., River Edge (2004)
    26. Gukov, S., Sparks, J.: M-theory on Spin(7) manifolds. Nuclear Phys. B 625, 12369 (2002)
    27. Figueroa-O鈥橣arrill J.M.: Breaking the M-waves. Class. Quantum Grav. 17(15), 2925鈥?947 (2000) CrossRef
    28. Jacobson T., Romano J.D.: The spin holonomy group in general relativity. Commun. Math. Phys. 155(2), 261鈥?76 (1993) CrossRef
    29. Joyce, D.: Riemannian holonomy groups and calibrated geometry. Oxford University Press, Oxford (2007)
    30. Hall G.S., Lonie D.P.: Holonomy groups and spacetimes. Class. Quantum Grav. 17, 1369鈥?382 (2000) CrossRef
    31. Kostant B.: On invariant skew-tensors. Proc. Nat. Acad. Sci. USA 42, 148鈥?51 (1956) CrossRef
    32. Leistner T.: On the classification of Lorentzian holonomy groups. J. Differ. Geom. 76(3), 423鈥?84 (2007)
    33. Leistner T.: Screen bundles of Lorentzian manifolds and some generalisations of pp-waves. J. Geom. Phys. 56(10), 2117鈥?134 (2006) CrossRef
    34. McInnes B.: Obtaining holonomy from curvature. J. Phys. A Math. Gen. 30, 661鈥?71 (1997) CrossRef
    35. McInnes B.: Holonomy groups of compact Riemannian manifolds: a classification in dimensions up to ten. J. Math. Phys. 34(9), 4273鈥?286 (1993) CrossRef
    36. McInnes B.: Methods of holonomy theory for Ricci-flat Riemannian manifolds. J. Math. Phys. 32(4), 888鈥?96 (1991) CrossRef
    37. Walker A.G.: On parallel fields of partially null vector spaces. Quart. J. Math. Oxford Ser. 20, 135鈥?45 (1949) CrossRef
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical and Computational Physics
    Statistical Physics
    Geometry
    Group Theory and Generalizations
  • 出版者:Springer Netherlands
  • ISSN:1573-0530
文摘
Manifolds with exceptional holonomy play an important role in string theory, supergravity and M-theory. It is explained how one can find the holonomy algebra of an arbitrary Riemannian or Lorentzian manifold. Using the de Rham and Wu decompositions, this problem is reduced to the case of locally indecomposable manifolds. In the case of locally indecomposable Riemannian manifolds, it is known that the holonomy algebra can be found from the analysis of special geometric structures on the manifold. If the holonomy algebra \({\mathfrak{g}\subset\mathfrak{so}(1,n-1)}\) of a locally indecomposable Lorentzian manifold (M, g) of dimension n is different from \({\mathfrak{so}(1,n-1)}\) , then it is contained in the similitude algebra \({\mathfrak{sim}(n-2)}\) . There are four types of such holonomy algebras. Criterion to find the type of \({\mathfrak{g}}\) is given, and special geometric structures corresponding to each type are described. To each \({\mathfrak{g}}\) there is a canonically associated subalgebra \({\mathfrak{h} \subset\mathfrak{so}(n-2)}\) . An algorithm to find \({\mathfrak{h}}\) is provided.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700