Local defects in the nanostructure of the membrane of erythrocytes upon ionizing radiation of blood
详细信息    查看全文
  • 作者:E. K. Kozlova ; V. A. Sergunova ; E. A. Krasavin…
  • 刊名:Physics of Particles and Nuclei Letters
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:13
  • 期:1
  • 页码:140-148
  • 全文大小:2,503 KB
  • 参考文献:1.H. Turker, “Potential effects of ultraviolet-C radiation on the mole rats (Spalaxleucodon), hematological values,” Am. J. Mol. Biol. 2, 235–240 (2013).CrossRef
    2.D. K. Myers and R. W. Bide, “Biochemical effects of Xirradiation on erythrocytes,” Radiat. Res. 27, 250–263 (1966).CrossRef
    3.R. Matthew and L. Drake, “Approaches for determining the effects of UV radiation on microorganisms in ballast water,” Manage. Biol. Invasion 4, 87–99 (2013).CrossRef
    4.J. B. Castelino, P. V. Holland, O. P. Jacobs, M. Lapidot, and M. Markovic, “Effects of ionizing radiation on blood and blood components: a survey,” IAEA-TECDOC-934 (Vienna, 1997).
    5.A. P. Kozlov, E. A. Krasavin, A. V. Boreiko, A. P. Chernyaev, P. Yu. Alekseeva, and U. A. Bliznyuk, “Investigation of erythrocyte membrane damage under the action of γ-radiation in a wide dose range using electroporation,” Phys. Part. Nucl. Lett. 5, 127 (2008).CrossRef
    6.A. P. Kozlov, E. A. Krasavin, A. V. Boreiko, A. P. Chernyaev, E. K. Kozlova, and A. M. Chernysh, “Investigation of erythrocyte membrane damage during irradiation by accelerated boron ion beam,” Med. Fiz., No. 1, 69–72 (2007).
    7.U. A. Bliznyuk, E. K. Kozlova, L. I. Deev, A. G. Platonov, A. P. Chernyaev, A. M. Chernysh, P. Yu. Alekseeva, and A. P. Kozlov, “Investigation of depth distribution of radiation effect by accelerated electron beam passing in erythrocyte suspension using the electroporation method,” Med. Fiz., No. 2, 67–70 (2007).
    8.E. K. Manders and C. D. Manders, “Sterilization, stabilization and preservation of functional biologics,” Patent Application Publ., US 2004/0126880 A1.
    9. Human Physiology, Ed. by R. F. Schmidt and G. Thews (Springer, Berlin, Heidelberg, New York, 1983; Mir, Moscow, 2005), pp. 423–426.
    10.Yu. B. Kudryashov and B. S. Berenfel’d, Principles of Radiation Biophysics (Mosk. Gos. Univ., Moscow, 1982) [in Russian].
    11.E. K. Kozlova, A. M. Chernysh, A. P. Chernyaev, A. V. Bushueva, O. E. Gudkova, V. A. Sergunova, A. P. Kozlov, and Yu. S. Zhdankina, “Oxidation processes under the action of ultraviolet radiation on red blood cells,” Med. Fiz., No. 2, 63–70 (2014).
    12.H. L. Reddy, S. K. Doane, S. D. Keil, S. Marschner, and R. P. Goodrich, “Development of a riboflavin and ultraviolet light-based device to treat whole blood,” Transfusion 53 (Suppl. 1), 131–136 (2013).CrossRef
    13.R. B. Misra, R. S. Ray, and R. K. Hans, “Effect of UVB radiation on human erythrocytes in vitro,” Toxicol. In vitro 19, 433–438 (2005).CrossRef
    14.E. Kozlova, A. Chernysh, V. Moroz, O. Gudkova, V. Sergunova, and A. Kuzovlev, “Atomic force microscope images of the nanostructure of red blood cells membrane under the action of ionizing radiation and other physicochemical influence,” in Proceedings of the Workshop on Physics Health in Europe (CERN, 2010), p.46.
    15.V. V. Moroz, A. M. Chernysh, E. K. Kozlova, P. Y. Borshegovskaya, U. A. Bliznjuk, R. M. Rysaeva, and O. Y. Gudkova, “Comparison of red blood cell membrane microstructure after different physicochemical influences: atomic force microscope research,” J. Crit. Care 25, 539.e1–539.e12 (2010).
    16.V. V. Moroz, A. M. Chernysh, E. K. Kozlova, V. A. Sergunova, O. E. Gudkova, M. S. Fedorova, A. K. Kirsanova, and I. S. Novoderzhkina, “Violations of erythrocyte membrane nanostructure during acute blood loss and their correction by perfluorocarbon emulsions,” Obshch. Reanimatol. 7 (2), 5–9 (2011).CrossRef
    17.V. V. Moroz, A. K. Kirsanova, I. S. Novoderzhkina, E. K. Kozlova, P. Yu. Borshchegovskaya, U. A. Bliznyuk, V. V. Aleksandrin, and A. M. Chernysh, “Changes in erythrocyte membrane surface ultrastructure after blood loss and its correction by laser irradiation,” Obshch. Reanimatol. 6 (2), 5–9 (2010).CrossRef
    18.E. K. Kozlova, A. M. Chernysh, V. V. Moroz, and A. N. Kuzovlev, “Analysis of nanostructure of red blood cells membranes by space fourier transform of AFM images,” Micron 44, 218–227 (2013).CrossRef
    19.E. Kozlova, A. Chernysh, V. Moroz, O. Gudkova, V. Sergunova, and A. Kuzovlev, “Transformation of membrane nanosurface of red blood cells under hemin action,” Sci. Rep., 11 (2014).
    20.V. V. Moroz, E. K. Kozlova, A. M. Chernysh, O. E. Gudkova, and A. V. Bushueva, “Transformation of erythrocyte membrane structure under hemin action,” Obshch. Reanimatol., No. 6, 5–10 (2012).
    21.A. M. Chernysh, E. K. Kozlova, V. V. Moroz, V. A. Sergunova, O. Y. Gudkova, and M. S. Fedorova, “Reversible zinc-induced injuries to erythrocyte membrane nanostructure,” Bull. Exp. Biol. Med. 154, 84–88 (2012).CrossRef
    22.L. Wielopolski and B. Ciesielski, “Boron dose determination for BNCT using Fricke and EPR dosimetry,” in Cancer Neutron Capture Therapy, Ed. by Y. Mishima (Springer, US, 1996), pp. 467–471.CrossRef
    23.G. Bosman, M. Stappersa, and V. Novotny, “Changes in band 3 structure as determinants of erythrocyte integrity during storage and survival after transfusion,” Blood Transfus. 8 (Suppl. 3), s48–s52 (2010).
    24.V. V. Moroz, A. M. Golubev, A. M. Chernysh, E. K. Kozlova, V. Yu. Vasil’ev, O. E. Gudkova, V. A. Sergunova, and M. S. Fedorova, “Transformation of erythrocyte membrane surface structure during prolonged storage of donated blood,” Obshch. Reanimatol. 8 (1), 5 (2012).CrossRef
    25.R. E. Jhonson and T. I. Quickenden, “Photolysis and radiolysis of water ice on outer solar system bodies,” J. Geophys. Res. 102 (E5), 10985 (1997).CrossRef ADS
    26.J. Cluitmans, P. Sens, and G. J. C. J. M. Bosman, “Cytoskeletal control of red blood cell shape: theory and practice of vesicle formation,” in Advances in Planar Lipid Bilayers and Liposomes, Ed. by A. Leitmannova Liu and A. Iglić (Academic, Burlington, 2009), Vol. 10, pp. 95–119.CrossRef
    27.G. M. Wagner, D. T. Chiu, J. H. Qju, R. H. Heath, and B. H. Lubin, “Spectrin oxidation correlates with membrane vesiculation in stored RBCs,” Blood 69, 1777–1781 (1987).
  • 作者单位:E. K. Kozlova (1) (2)
    V. A. Sergunova (1)
    E. A. Krasavin (3)
    A. V. Boreyko (3)
    A. V. Zavialova (1)
    A. P. Kozlov (2)
    A. M. Chernysh (1) (2)

    1. Negovsky Scientific Research Institute of General Reanimatology, Moscow, Russia
    2. Sechenov First Moscow State Medical University, Moscow, Russia
    3. Joint Institute for Nuclear Research, Dubna, Russia
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Elementary Particles and Nuclei
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1531-8567
文摘
The purpose of the study is to investigate local topological defects in the erythrocyte membranes resulting from the ultraviolet (UV) radiation of blood in vitro. Biological effects in the erythrocytes after exposure to UV radiation at a wavelength of 254 nm are equivalent to those after γ radiation. It has been shown that oxidative processes developing in a suspension upon UV radiation result in the disruption of the nanostructure of the membranes of erythrocytes. In the experiments, typical topological defects in the membrane nanostructure were observed. The parameters of the defects differed from the characteristics of the nanostructure of the control cell membrane without irradiation. The characteristic dimensions of the topological defects are commensurate with the size of the spectrin matrix. As a result of the exposure to the UV radiation, polymorphism of the erythrocytes was observed. Original Russian Text © E.K. Kozlova, V.A. Sergunova, E.A. Krasavin, A.V. Boreyko, A.V. Zavialova, A.P. Kozlov, A.M. Chernysh, 2016, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700