Effects of food availability on asexual reproduction and stress tolerance along the fast–slow life history continuum in freshwater hydra (Cnidaria: Hydrozoa)
详细信息    查看全文
  • 作者:Jácint Tökölyi ; Flóra Bradács ; Nikolett Hóka ; Noémi Kozma ; Máté Miklós…
  • 关键词:Dietary restriction ; Food variability ; Hydra ; Life history evolution ; Resource allocation trade ; offs
  • 刊名:Hydrobiologia
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:766
  • 期:1
  • 页码:121-133
  • 全文大小:548 KB
  • 参考文献:Bates, D., M. Maechler, B. Bolker, & S. Walker, 2014. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://​CRAN.​R-project.​org/​package=​lme4 .
    Bielby, J., G. M. Mace, O. R. P. Bininda-Emonds, M. Cardillo, J. L. Gittleman, K. E. Jones, C. D. L. Orme & A. Purvis, 2007. The fast-slow continuum in mammalian life history: an empirical reevaluation. The American Naturalist 169: 748–757.PubMed CrossRef
    Blackburn, T. M., 1991. Evidence for a `fast-slow’ continuum of life-history traits among parasitoid Hymenoptera. Functional Ecology 5: 65–74.CrossRef
    Bode, H. R., K. M. Flick & P. M. Bode, 1977. Constraints on the relative sizes of the cell populations in Hydra attenuata. Journal of Cell Science 24: 31–50.PubMed
    Boggs, C. L., 2009. Understanding insect life histories and senescence through a resource allocation lens. Functional Ecology 23: 27–37.CrossRef
    Bosch, T. C. G. & C. N. David, 1986. Male and female stem cells and sex reversal in Hydra polyps. Proceedings of the National Academy of Sciences 83: 9478–9482.CrossRef
    Bosch, T. C., S. M. Krylow, H. R. Bode & R. E. Steele, 1988. Thermotolerance and synthesis of heat shock proteins: these responses are present in Hydra attenuata but absent in Hydra oligactis. Proceedings of the National Academy of Sciences 85: 7927–7931.CrossRef
    Brennecke, T., K. Gellner & T. C. G. Bosch, 1998. The lack of a stress response in Hydra oligactis is due to reduced hsp70 mRNA stability. European Journal of Biochemistry 255: 703–709.PubMed CrossRef
    Bridge, D., A. G. Theofiles, R. L. Holler, E. Marcinkevicius, R. E. Steele & D. E. Martínez, 2010. FoxO and stress responses in the Cnidarian Hydra vulgaris. PLoS One 5: e11686.PubMed PubMedCentral CrossRef
    Bryden, R. R., 1952. Ecology of Pelmatohydra oligactis in Kirkpatricks Lake. Tennessee Ecological Monographs 22: 45.CrossRef
    Christensen, R. H. B., 2013. Ordinal –Regression models for ordinal data. R package version 2013.9-30. http://​www.​cran.​r-project.​org/​package=​ordinal/​ .
    Clobert, J., T. Garland & R. Barbault, 1998. The evolution of demographic tactics in lizards: a test of some hypotheses concerning life history evolution. Journal of Evolutionary Biology 11: 329–364.CrossRef
    Cook, C. B. & M. O. Kelty, 1982. Glycogen, protein, and lipid content of green, aposymbiotic, and nonsymbiotic hydra during starvation. Journal of Experimental Zoology 222: 1–9.CrossRef
    Finkel, T. & N. J. Holbrook, 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408: 239–247.PubMed CrossRef
    Gaillard, J.-M., D. Pontier, D. Allainé, J. D. Lebreton, J. Trouvilliez, J. Clobert & D. Allaine, 1989. An analysis of demographic tactics in birds and mammals. Oikos 56: 59.CrossRef
    Glazier, D. S., 1999. Trade-offs between reproductive and somatic (storage) investments in animals: a comparative test of the Van Noordwijk and De Jong model. Evolutionary Ecology 13: 539–555.CrossRef
    Harshman, L. G. & A. J. Zera, 2007. The cost of reproduction: the devil in the details. Trends in Ecology & Evolution 22: 80–86.CrossRef
    Hecker, B. & L. B. Slobodkin, 1976. Responses of Hydra oligactis to temperature and feeding rate. In Mackie, G. O. (ed), Coelenterate Ecology and Behavior. Springer, New York: 175–183.CrossRef
    Kaliszewicz, A., 2011. Interference of asexual and sexual reproduction in the green hydra. Ecological Research 26: 147–152.CrossRef
    Kaliszewicz, A. & A. Lipińska, 2013. Environmental condition related reproductive strategies and sex ratio in hydras. Acta Zoologica 94: 177–183.CrossRef
    Kelty, M. O. & C. B. Cook, 1976. Survival during starvation of symbiotic, aposymbiotic, and non-symbiotic hydra. In Mackie, G. O. (ed), Coelenterate Ecology and Behavior. Springer, New York: 409–414.CrossRef
    Kessler, E., G. Kauer & M. Rahat, 1991. Excretion of sugars by Chlorella species capable and incapable of symbiosis with Hydra viridis. Botanica Acta 104: 58–63.CrossRef
    King, E. G., D. A. Roff & D. J. Fairbairn, 2011. Trade-off acquisition and allocation in Gryllus firmus: a test of the Y model. Journal of Evolutionary Biology 24: 256–264.PubMed CrossRef
    Kirk, K. L., 2001. Dietary restriction and aging –comparative tests of evolutionary hypotheses. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 56: B123–B129.CrossRef
    Lenhoff, H. M., 1983. Hydra: Research Methods. Plenum Press, New York and London.CrossRef
    Lesser, M. P., 2006. Oxidative stress in marine environments: biochemistry and physiological ecology. Annual Review in Physiology 68: 253–278.CrossRef
    Martínez, D. E., 1998. Mortality patterns suggest lack of senescence in hydra. Experimental Gerontology 33: 217–225.PubMed CrossRef
    Martínez, D. E., A. R. Iñiguez, K. M. Percell, J. B. Willner, J. Signorovitch & R. D. Campbell, 2010. Phylogeny and biogeography of Hydra (Cnidaria: Hydridae) using mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution 57: 403–410.PubMed CrossRef
    Muscatine, L., 1965. Symbiosis of hydra and algae—III. Extracellular products of the algae. Comparative Biochemistry and Physiology 16: 77–92.PubMed CrossRef
    Muscatine, L. & H. M. Lenhoff, 1965. Symbiosis of hydra and algae. II. effects of limited food and starvation on growth of symbiotic and aposymbiotic hydra. The Biological Bulletin 129: 316–328.CrossRef
    Nakagawa, S., M. Lagisz, K. L. Hector & H. G. Spencer, 2012. Comparative and meta-analytic insights into life extension via dietary restriction. Aging Cell 11: 401–409.PubMed CrossRef
    O’Brien, D. M., K.-J. Min, T. Larsen & M. Tatar, 2008. Use of stable isotopes to examine how dietary restriction extends Drosophila lifespan. Current Biology 18: R155–R156.PubMed CrossRef
    Partridge, L., M. D. W. Piper & W. Mair, 2005. Dietary restriction in Drosophila. Mechanisms of Ageing and Development 126: 938–950.PubMed CrossRef
    Promislow, D. E. L. & P. H. Harvey, 1990. Living fast and dying young: a comparative analysis of life-history variation among mammals. Journal of Zoology 220: 417–437.CrossRef
    Quinn, B., F. Gagné & C. Blaise, 2012. Hydra, a model system for environmental studies. The International Journal of Developmental Biology 56: 613–625.PubMed CrossRef
    Reisa, J., 1973. Ecology of hydra. In Burnett, A. (ed), Biology of Hydra. Academic Press, New York and London: 59–105.
    Reznick, D., L. Nunney, A. Tessier, D. Reznick, L. Nunney, A. Tessier, D. Reznick, L. Nunney, A. Tessier, D. Reznick, L. Nunney & A. Tessier, 2000. Big houses, big cars, superfleas and the costs of reproduction. Trends in Ecology & Evolution 15: 421–425.CrossRef
    Roff, D. A., 2002. Life History Evolution. Sinauer Associates Inc., Sunderland.
    Schaible, R., M. Sussman & B. H. Kramer, 2014. Aging and potential for self-renewal: hydra living in the age of aging –a mini-review. Gerontology 60: 548–556.PubMed CrossRef
    Schuchert, P., 2010. The European athecate hydroids and their medusae (Hydrozoa, Cnidaria): Capitata Part 2. Revue suisse de Zoologie 117: 337–555.CrossRef
    Schwentner, M. & T. C. G. Bosch, 2015. Revisiting the age, evolutionary history and species level diversity of the genus Hydra (Cnidaria: Hydrozoa). Molecular Phylogenetics and Evolution 91: 41–55.PubMed CrossRef
    Speakman, J. R. & M. Garratt, 2014. Oxidative stress as a cost of reproduction: beyond the simplistic trade-off model. BioEssays 36: 93–106.PubMed CrossRef
    Stearns, S. C., 1992. The Evolution of Life Histories. Oxford University Press, Oxford.
    Tessier, A. J., M. A. Leibold & J. Tsao, 2000. A fundamental trade-off in resource exploitation by Daphnia and consequences to plankton communities. Ecology 81: 826–841.CrossRef
    Tökölyi, J., M. E. Rosa, F. Bradács & Z. Barta, 2014. Life history trade-offs and stress tolerance in green hydra (Hydra viridissima Pallas 1766): the importance of nutritional status and perceived population density. Ecological Research 29: 867–876.CrossRef
    Tomczyk, S., K. Fischer, S. Austad & B. Galliot, 2015. Hydra, a powerful model for aging studies. Invertebrate Reproduction & Development 59: 11–16.CrossRef
    Turrens, J. F., 2003. Mitochondrial formation of reactive oxygen species. The Journal of Physiology 552: 335–344.PubMed PubMedCentral CrossRef
    van Noordwijk, A. J. & G. de Jong, 1986. Acquisition and allocation of resources: their influence on variation in life history tactics. The American Naturalist 128: 137–142.CrossRef
    Yoshida, K., T. Fujisawa, J. S. Hwang, K. Ikeo & T. Gojobori, 2006. Degeneration after sexual differentiation in hydra and its relevance to the evolution of aging. Gene 385: 64–70.PubMed CrossRef
    Zera, A. J. & L. G. Harshman, 2001. The physiology of life history trade-offs in animals. Annual Review of Ecology and Systematics 32: 95–126.CrossRef
  • 作者单位:Jácint Tökölyi (1)
    Flóra Bradács (1)
    Nikolett Hóka (1)
    Noémi Kozma (1)
    Máté Miklós (1)
    Orsolya Mucza (1)
    Kinga Lénárt (1)
    Zsófia Ősz (1)
    Flóra Sebestyén (1)
    Zoltán Barta (1)

    1. MTA-DE “Lendület” Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Hydrobiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5117
文摘
Life history theory predicts that reproduction and somatic maintenance are negatively related, but the strength of this relationship is expected to depend on food availability. In this study, we investigated asexual reproduction (budding rate) and oxidative stress tolerance as two opposing facets of life history trade-offs in 17 strains of five freshwater hydra species under experimentally simulated low, medium, and high food availability. Stress tolerance was quantified by exposing animals to exogenous H2O2, which mimics reactive oxygen species arising in vivo. The five species differed in life history traits (low budding rate and high stress tolerance in Hydra vulgaris and H. circumcincta and the opposite in H. oligactis and H. viridissima; low budding rate combined with relatively low stress tolerance in H. oxycnida). Stress tolerance and asexual reproduction increased with food, but there were clear interspecific differences in this relationship. Across all strains, stress tolerance and budding rate were significantly negatively related on the low and medium, but not the high food level. These results suggest that resource allocation trade-offs are involved in determining life history traits in hydra; populations/species can be broadly positioned on a fast–slow life history continuum, and response to variation in food varies along this continuum. Keywords Dietary restriction Food variability Hydra Life history evolution Resource allocation trade-offs

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700