On Turbulent Fluxes During Strong Winter Bora Wind Events
详细信息    查看全文
  • 作者:Nevio Babić ; Željko Večenaj ; Hrvoje Kozmar ; Kristian Horvath…
  • 关键词:Bora ; Complex terrain ; Constant ; flux layer ; Coherent structures ; Flux divergence
  • 刊名:Boundary-Layer Meteorology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:158
  • 期:2
  • 页码:331-350
  • 全文大小:3,246 KB
  • 参考文献:Babić K, Bencetić Klaić Z, Večenaj Ž (2012) Determining a turbulence averaging time scale by Fourier analysis for the nocturnal boundary layer. Geofizika 29(1):35–51
    Bajić A (1989) Severe bora on the northern Adriatic. Part I: Statistical analysis. Raspr-Pap 24:1–9
    Bajić A (1991) Application of the two-layer hydraulic theory on the severe northern Adriatic bora. Meteor Rundschau 44:129–133
    Barthlott C, Drobinski P, Fesquet C, Dubos T, Pietras C (2007) Long-term study of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol 125(1):1–24CrossRef
    Bechmann A, Sørensen NN, Berg J, Mann J, Réthoré PE (2011) The Bolund experiment. Part II: Blind comparison of microscale flow models. Boundary-Layer Meteorol 141(2):245–271CrossRef
    Belušić D, Bencetić Klaić Z (2006) Mesoscale dynamics, structure and predictability of a severe Adriatic bora case. Meteorol Z 15(2):157–168CrossRef
    Belušić D, Mahrt L (2012) Is geometry more universal than physics in atmospheric boundary layer flow? J Geophys Res Atmos (1984–2012) 117:D09115
    Belušić D, Pasarić M, Orlić M (2004) Quasi-periodic Bora gusts related to the structure of the troposphere. Q J R Meteorol Soc 130(598):1103–1121CrossRef
    Belušić D, Žagar M, Grisogono B (2007) Numerical simulation of pulsations in the bora wind. Q J R Meteorol Soc 133(627):1371–1388CrossRef
    Belušić D, Hrastinski M, Večenaj Ž, Grisogono B (2013) Wind regimes associated with a mountain gap at the northeastern Adriatic coast. J Appl Meteorol Clim 52(9):2089–2105CrossRef
    Bencetić Klaić Z, Belušić D, Grubišić V, Gabela L, Ćoso L (2003) Mesoscale airflow structure over the northern Croatian coast during MAP IOP-a major bora event. Geofizika 20(1):23–61
    Berg J, Mann J, Bechmann A, Courtney M, Jørgensen HE (2011) The Bolund Experiment, Part I: Flow over a steep, three-dimensional hill. Boundary-Layer Meteorol 141(2):219–243CrossRef
    Blackwelder R, Kaplan R (1976) On the wall structure of the turbulent boundary layer. J Fluid Mech 76(01):89–112CrossRef
    Bougeault P, Binder P, Buzzi A, Dirks R, Kuettner J, Houze R, Smith R, Steinacker R, Volkert H (2001) The MAP special observing period. Bull Am Meteorol Soc 82(3):433–462CrossRef
    Cava D, Schipa S, Giostra U (2005) Investigation of low-frequency perturbations induced by a steep obstacle. Boundary-Layer Meteorol 115(1):27–45CrossRef
    Diebold M, Higgins C, Fang J, Bechmann A, Parlange MB (2013) Flow over hills: a large-eddy simulation of the bolund case. Boundary-Layer Meteorol 148(1):177–194CrossRef
    Dupont S, Brunet Y, Finnigan J (2008) Large-eddy simulation of turbulent flow over a forested hill: validation and coherent structure identification. Q J R Meteorol Soc 134(636):1911–1929CrossRef
    Enger L, Grisogono B (1998) The response of bora-type flow to sea surface temperature. Q J R Meteorol Soc 124(548):1227–1244CrossRef
    Feigenwinter C, Vogt R (2005) Detection and analysis of coherent structures in urban turbulence. Theor Appl Climatol 81(3–4):219–230CrossRef
    Foken T, Wimmer F, Mauder M, Thomas C, Liebethal C (2006) Some aspects of the energy balance closure problem. Atmos Chem Phys 6(12):4395–4402CrossRef
    Fortuniak K, Pawlak W, Siedlecki M (2013) Integral turbulence statistics over a central European city centre. Boundary-Layer Meteorol 146(2):257–276CrossRef
    Gohm A, Mayr G (2005) Numerical and observational case-study of a deep Adriatic bora. Q J R Meteorol Soc 131(608):1363–1392CrossRef
    Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol 116(2):201–235CrossRef
    Grant ER, Ross AN, Gardiner BA, Mobbs SD (2015) Field observations of canopy flows over complex terrain. Boundary-Layer Meteorol 156(2):231–251CrossRef
    Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11(5/6):561–566CrossRef
    Grisogono B, Belušić D (2009) A review of recent advances in understanding the meso-and microscale properties of the severe bora wind. Tellus A 61(1):1–16CrossRef
    Grubišić V (2004) Bora-driven potential vorticity banners over the Adriatic. Q J R Meteorol Soc 130(602):2571–2603CrossRef
    Grubišić V, Stiperski I (2009) Lee-wave resonances over double bell-shaped obstacles. J Atmos Sci 66(5):1205–1228CrossRef
    Helgason W, Pomeroy JW (2012) Characteristics of the near-surface boundary layer within a mountain valley during winter. J Appl Meteorol Clim 51(3):583–597CrossRef
    Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78:215–246CrossRef
    Horiguchi M, Hayashi T, Adachi A, Onogi S (2012) Large-scale turbulence structures and their contributions to the momentum flux and turbulence in the near-neutral atmospheric boundary layer observed from a 213-m tall meteorological tower. Boundary-Layer Meteorol 144(2):179–198CrossRef
    Horvath K, Bajić A, Ivatek-Šahdan S (2011) Dynamical downscaling of wind speed in complex terrain prone to bora-type flows. J Appl Meteorol Soc 50(8):1676–1691
    Horvath K, Lin YL, Ivančan-Picek B (2008) Classification of cyclone tracks over the Apennines and the Adriatic Sea. Mon Weather Rev 136(6):2210–2227CrossRef
    Horvath K, Fita L, Romero R, Ivančan-Picek B (2006) A numerical study of the first phase of a deep Mediterranean cyclone: Cyclogenesis in the lee of the Atlas Mountains. Meteorol Z 15(2):133–146CrossRef
    Horvath K, Ivatek-Šahdan S, Ivančan-Picek B, Grubišić V (2009) Evolution and structure of two severe cyclonic bora events: contrast between the northern and southern Adriatic. Weather Forecast 24(4):946–964CrossRef
    Horvath K, Koracin D, Vellore R, Jiang J, Belu R (2012) Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models. J Geophys Res-Atmos (1984–2012) 117(D11). doi:10.​1029/​2011JD016447
    Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A 454(1971):903–995CrossRef
    Jeromel M, Vlado Malačič V, Rakovec J (2009) Weibull distribution of bora and sirocco winds in the northern Adriatic Sea. Geofizika 26(1):85–100
    Johansson AV, Alfredsson PH (1982) On the structure of turbulent channel flow. J Fluid Mech 122:295–314CrossRef
    Jurčec V (1981) On mesoscale characteristics of bora conditions in Yugoslavia. Weather and weather maps. Springer, New York, pp 640–657
    Kailas SV, Narasimha R (1994) Similarity in VITA-detected events in a nearly neutral atmospheric boundary layer. Proc R Soc Lond 447(1930):211–222CrossRef
    Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, Oxford 304 pp
    Klemp J, Durran D (1987) Numerical modelling of bora winds. Meteorol Atmos Phys 36(1–4):215–227CrossRef
    Kral ST, Sjöblom A, Nygård T (2014) Observations of summer turbulent surface fluxes in a High Arctic fjord. Q J R Meteorol Soc 140(679):666–675CrossRef
    Krusche N, De Oliveira AP (2004) Characterization of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol 110(2):191–211CrossRef
    Kuettner J, O’Neill T (1981) ALPEX-the GARP mountain subprogram. Bull Am Meteorol Soc 62(6):793–805
    Lee X, Massman W, Law BE (2004) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer Academic Publishers, Dordrecht 250 pp
    Lepri P, Kozmar H, Večenaj Ž, Grisogono B (2014) A summertime near-ground velocity profile of the Bora wind. Wind Struct 19(5):505–522CrossRef
    Lopes AS, Palma J, Castro F (2007) Simulation of the Askervein flow. Part 2: large-eddy simulations. Boundary-Layer Meteorol 125(1):85–108CrossRef
    Lundquist JK (2003) Intermittent and elliptical inertial oscillations in the atmospheric boundary layer. J Atmos Sci 60(21):2661–2673CrossRef
    Mahrt L (2007) The influence of nonstationarity on the turbulent flux-gradient relationship for stable stratification. Boundary-Layer Meteorol 125:245–264CrossRef
    Mahrt L, Gamage N (1987) Observations of turbulence in stratified flow. J Atmos Sci 44:1106–1121CrossRef
    Mason RA, Shirer HN, Wells R, Young GS (2002) Vertical transports by plumes within the moderately convective marine atmospheric surface layer. J Atmos Sci 59(8):1337–1355CrossRef
    Metzger M, Holmes H (2008) Time scales in the unstable atmospheric surface layer. Boundary-Layer Meteorol 126(1):29–50CrossRef
    Moncrieff J, Clement R, Finnigan J, Meyers T (2004) Averaging, detrending, and filtering of eddy covariance time series. Handbook of micrometeorology. Springer, New York, pp 7–31
    Monin A, Obukhov A (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 151:163–187
    Moreira GA, Dos Santos AA, Do Nascimento CA, Valle RM (2012) Numerical study of the neutral atmospheric boundary layer over complex terrain. Boundary-Layer Meteorol 143(2):393–407CrossRef
    Nadeau DF, Pardyjak ER, Higgins CW, Parlange MB (2013) Similarity scaling over a steep alpine slope. Boundary-Layer Meteorol 147(3):401–419CrossRef
    Oncley SP, Friehe CA, Larue JC, Businger JA, Itsweire EC, Chang SS (1996) Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions. J Atmos Sci 53(7):1029–1044CrossRef
    Petkovšek Z (1976) Periodicity of bora gusts. Razpr–Pap SMD 20:67–75
    Petkovšek Z (1982) Gravity waves and bora gusts. Ann Meteorol (NF) 19:108–110
    Petkovšek Z (1987) Main bora gusts—a model explanation. Geofizika 4:41–50
    Poje D (1992) Wind persistence in Croatia. Int J Climatol 12(6):569–586CrossRef
    Reynolds O (1894) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Proc R Soc Lond 56(336–339):40–45CrossRef
    Robinson SK (1991) Coherent motions in the turbulent boundary layer. Annu Rev Fluid Mech 23(1):601–639CrossRef
    Segalini A, Alfredsson PH (2012) Techniques for the eduction of coherent structures from flow measurements in the atmospheric boundary layer. Boundary-Layer Meteorol 143(3):433–450CrossRef
    Smith RB (1987) Aerial observations of the Yugoslavian bora. J Atmos Sci 44(2):269–297CrossRef
    Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht 666 ppCrossRef
    Thomas C, Foken T (2007) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Boundary-Layer Meteorol 123(2):317–337CrossRef
    Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78CrossRef
    Undheim O, Andersson H, Berge E (2006) Non-linear, microscale modelling of the flow over Askervein Hill. Boundary-Layer Meteorol 120(3):477–495CrossRef
    Van der Hoven I (1957) Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J Meteorol 14(2):160–164CrossRef
    Večenaj Ž, Belušić D, Grisogono B (2010) Characteristics of the near-surface turbulence during a bora event. Ann Geophys 28:155–163CrossRef
    Večenaj Ž, De Wekker SFJ (2014) Determination of non-stationarity in the surface layer during the T-REX experiment. Q J R Meteorol Soc 141(690):1560–1571CrossRef
    Večenaj Ž, De Wekker SFJ, Grubišić V (2011) Near-surface characteristics of the turbulence structure during a mountain-wave event. J Appl Meteorol Clim 50(5):1088–1106CrossRef
    Večenaj Ž, Belušić D, Grubišić V, Grisogono B (2012) Along-coast features of bora-related turbulence. Boundary-Layer Meteorol 143(3):527–545CrossRef
    Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Tech 14(3):512–526CrossRef
    Vickers D, Mahrt L (2006) A solution for flux contamination by mesoscale motions with very weak turbulence. Boundary-Layer Meteorol 118(3):431–447CrossRef
    Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press, Oxford 355 pp
    Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99(1):127–150CrossRef
    Yoshino M (1976) Local wind bora: a research summary. University of Tokyo Press, Tokyo, pp 277–282
    Zeri M, Sá LDdA (2011) Scale dependence of coherent structures’ contribution to the daytime buoyancy heat flux over the Pantanal wetland, Brazil. Atmos Sci Lett 12(2):200–206CrossRef
  • 作者单位:Nevio Babić (1)
    Željko Večenaj (2)
    Hrvoje Kozmar (3)
    Kristian Horvath (4)
    Stephan F. J. De Wekker (1)
    Branko Grisogono (2)

    1. Department of Environmental Sciences, University of Virginia, 291 McCormick Road, Charlottesville, VA, 22904, USA
    2. Department of Geophysics, University of Zagreb, Horvatovac 95, 10000, Zagreb, Croatia
    3. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000, Zagreb, Croatia
    4. Meteorological and Hydrological Service, Grič 3, 10000, Zagreb, Croatia
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Meteorology and Climatology
    Atmospheric Protection, Air Quality Control and Air Pollution
  • 出版者:Springer Netherlands
  • ISSN:1573-1472
文摘
Well known for its severity, the bora downslope windstorms have been extensively studied over the last several decades. This study focuses on the turbulence characteristics of bora at a topographically complex site near the eastern coast of the Adriatic Sea. For this purpose, a 3-month eddy-covariance dataset obtained at three levels (10, 22, 40 m) on a 60-m flux tower is used. After determining a suitable averaging time scale of 15 min using the fast Fourier transform and the ogive method, vertical fluxes of momentum and heat were calculated for 17 bora episodes. Up to a wind speed of \(12\,\mathrm {m\, s}^{-1}\), typical vertical profiles of momentum and heat were observed. However, for wind speeds >\(12\,\mathrm {m\, s}^{-1}\), several interesting observations arose. First, the nighttime heat flux at the 10-m level was often found to be positive rather negative. Second, vertical profiles of the momentum flux were larger at the 22-m level than at 10- and 40-m levels, mostly during nearly neutral to weakly stable thermal stratification. Third, these momentum flux profiles showed a large dependence on wind direction, with virtually no vertical transport of momentum for the largest observed wind speeds. For the first time, bora coherent structures have been analyzed using the so-called variable-interval time averaging (VITA) method. The method detected coherent structures in all three wind-speed components, with structure topologies similar to those observed over forest canopies. The momentum flux increase at the 22-m level, relative to the 10- and 40-m levels, is further supported by the VITA findings. Keywords Bora Complex terrain Constant-flux layer Coherent structures Flux divergence

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700