Hyperbolic is the only Hilbert geometry having circumcenter or orthocenter generally
详细信息    查看全文
  • 作者:József Kozma ; Árpád Kurusa
  • 关键词:Hilbert geometry ; Hyperbolic geometry ; Circumcenter ; Orthocenter ; Ellipsoid characterization ; 53A35 ; 51M09 ; 52A20
  • 刊名:Beitr?ge zur Algebra und Geometrie / Contributions to Algebra and Geometry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:57
  • 期:1
  • 页码:243-258
  • 全文大小:833 KB
  • 参考文献:Amir, D.: Characterizations of Inner Product Spaces. Birkhäuser Verlag, Basel, Boston, Stuttgart (1986)CrossRef MATH
    Busemann, H., Kelly, P.J.: Projective Geometries and Projective Metrics. Academic Press, New York (1953). v+332 pp
    Gruber, P.M., Schuster, F.E.: An arithmetic proof of Johns ellipsoid theo. Arch. Math. 85, 82–88 (2005)CrossRef MathSciNet MATH
    Gruber, P.M.: Convex and Discrete Geometry. Springer-Verlag, Berlin, Heidelberg (2007)MATH
    Guo, R.: Characterizations of hyperbolic geometry among Hilbert geometries: a survey. In: Papadopoulos, A., Troyanov, A. (eds.) Handbook of Hilbert Geometry. IRMA Lectures in Mathematics and Theoretical Physics, vol. 22, pp. 147–158. European Mathematical Society Publishing House (2014). doi:10.​4171/​147 . http://​www.​math.​oregonstate.​edu/​~guore/​docs/​survey-Hilbert.​pdf
    Hilbert, D.: Foundations of Geometry. Open Court Classics. Lasalle, Illinois (1971)
    Horváth, Á.G.: Semi-indefinite inner product and generalized Minkowski spaces. J. Geom. Phys. 60, 1190–1208 (2010)CrossRef MathSciNet MATH
    Horváth, Á.G.: Premanifolds. Note di Math. 31(2), 17–51 (2011)MATH
    Ivanov N., Arnol’d V.: The Jacobi identity, and orthocenters. Am. Math. Mon. 118, 41–65 (2011). doi: 10.​4169/​amer.​math.​monthly.​118.​01.​041
    Kelly, P.J., Paige, L.J.: Symmetric perpendicularity in Hilbert geometries. Pac. J. Math. 2, 319–322 (1952)CrossRef MathSciNet MATH
    Kárteszi, F.: Introduction to Finite Geometries, Disquisitiones Mathematicae Hungaricae 7, Akadémiai Kiadó, Budapest, 1976 (translated from the Hungarian version: Bevezetés a véges geometriákba. Akadémiai Kiadó, Budapest (1972)
    Kiss, G., Szőnyi, T.: Véges geometriák, Polygon, Szeged, (2001) (in Hungarian)
    Kozma, J., Kurusa, Á.: Ceva’s and Menelaus’ Theorems characterize hyperbolic geometry among Hilbert geometries, J. Geom. (2014) to appear. doi:10.​1007/​s00022-014-0258-7
    Martin, G.E.: The Foundations of Geometry and the Non-Euclidean Plane. Springer Verlag, New York (1975)MATH
    Martini, H., Swanepoel, K., Weiss, G.: The geometry of Minkowski spaces—a survey. Part I, Expos. Math. 19, 97–142 (2001)CrossRef MathSciNet MATH
    Martini, H., Swanepoel, K.: The geometry of Minkowski spaces—a survey. Part II, Expos. Math. 22(2), 93–144 (2004)MathSciNet MATH
    Segre, B.: Ovals in a finite projective plane. Can. J. Math. 7, 414–416 (1955). doi:10.​4153/​CJM-1955-045-x
  • 作者单位:József Kozma (1)
    Árpád Kurusa (1)

    1. Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, 6725, Szeged, Hungary
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Algebra
    Convex and Discrete Geometry
    Geometry
    Algebraic Geometry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:2191-0383
文摘
A Hilbert geometry is hyperbolic if and only if the perpendicular bisectors or the altitudes of any trigon form a pencil. We also prove some interesting characterizations of the ellipse. Keywords Hilbert geometry Hyperbolic geometry Circumcenter Orthocenter Ellipsoid characterization

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700