Influence of Some Hofmeister Anions on the Krafft Temperature and Micelle Formation of Cetylpyridinium Bromide in Aqueous Solution
详细信息    查看全文
  • 作者:Md. Nazrul Islam ; Khokan Chandra Sarker…
  • 关键词:Cationic surfactant ; Krafft temperature ; Critical micelle concentrations ; Hofmeister anions
  • 刊名:Journal of Surfactants and Detergents
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:18
  • 期:1
  • 页码:9-16
  • 全文大小:408 KB
  • 参考文献:1. Myers D (2004) Surfactant science and technology, 3rd edn. Wiley Interscience, New Jersey
    2. Rosen MJ (2006) Surfactants and interfacial phenomena, 3rd edn. Wiley Interscience, New York
    3. Tsuji K, Mino J (1978) Krafft point depression of some zwitterionic surfactants by inorganic salts. J Phys Chem 82:1610-614 CrossRef
    4. Chu Z, Feng YJ (2012) Empirical correlations between Krafft temperature and tail length for amidosulfobetaine surfactants in the presence of inorganic salt. Langmuir 28:1175-181 CrossRef
    5. Nakayama H, Shinoda K (1967) The effect of added salts on the solubilities and Krafft points of sodium dodecyl sulfate and potassium perfluoro-octanoate. Bull Chem Soc Jpn 40:1797-799 CrossRef
    6. Shinoda K, Yamaguchi N, Carlsson A (1989) Physical meaning of the Krafft point: observation of melting phenomenon of hydrated solid surfactant at the Krafft point. J Phys Chem 93:7216-218 CrossRef
    7. Carolina V-G, Bales BL (2003) Estimate of the ionization degree of ionic micelles based on Krafft temperature measurements. J Phys Chem B 107:5398-403 CrossRef
    8. Bakshi MS, Sood R (2004) Cationic surfactant–poly(amido amine) dendrimer interactions studied by Krafft temperature measurements. Colloids Surf A 233:203-10 CrossRef
    9. Islam MN, Sarker KC, Akhtaruzzaman G (2014) Effect of electrolytes on the Krafft temperature of cetylpyridinium chloride in aqueous solution. J Surfact Deterg 17:525-30 CrossRef
    10. Iglauer S, Wu Y, Shuler P, Tang Y, Goddard WA (2010) New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential. J Pet Sci Eng 71:23-9 CrossRef
    11. Vijayan S, Ramachandran C, Shah DO (1981) Effect of salt and aging on surfactant formulation for enhanced oil recovery: a correlation of physical properties with microsctructure using spin-labels. J Am Oil Chem Soc 58:566-73 CrossRef
    12. Diamant H, Andelman D (1996) Kinetics of surfactant adsorption at fluid–fluid interfaces. J Phys Chem 100:13732-3742 CrossRef
    13. Michele AD, Brinchi L, Profio PD, Germani R, Sawelli G, Onori G (2011) Effect of head group size, temperature and counterion specificity on cationic micelles. J Colloid Interface Sci 358:160-66 CrossRef
    14. Mata J, Varade D, Bahadur P (2005) Aggregation behavior of quaternary salt based cationic surfactants. Thermochim Acta 428:147-55 CrossRef
    15. Bojan S, Marija B-R (2009) Temperature and salt-induced micellization of dodecyltrimethylammonium chloride in aqueous solution: a thermodynamic study. J Colloid Interface Sci 338:216-21 CrossRef
    16. Nakahara H, Shibata O, Moroi Y (2011) Examination of surface adsorption of cetyltrimethylammonium bromide and sodium dodecyl sulfate. J Phys Chem B 115:9077-086 CrossRef
    17. Mukhim T, Dey J, Das S, Ismail K (2010) Aggregation and adsorption behavior of cetylpyridinium chloride in aqueous sodium salicylate and sodium benzoate solutions. J Colloid Interface Sci 350:511-15 CrossRef
    18. Sugihara G, Hisatomi M (1998) Roles of counterion binding in the micelle formation of ionic surfactants in water. J Jpn Oil Chem Soc 47:661-83
文摘
In this work, the effect of some Hofmeister anions on the Krafft temperature (T K) and micelle formation of cetylpyridinium bromide (CPB) have been studied. The results show that more chaotropic anions increase, while the less chaotropic ones lower the T K of the surfactant. More chaotropic I?/sup> and SCN?/sup> form contact ion pairs with the cetylpyridinium ion and reduce the electrostatic repulsion between the CPB molecules. As a result, these ions show salting-out behavior, with a consequent increase in the T K. In contrast, less chaotropic Cl?/sup> and NO3 ?/sup> increase the activity of free water molecules and enhance hydration of CPB molecules, showing a decrease in the T K. A rather unusual behavior was observed in the case of SO4 2?/sup> and F?/sup>. These strong kosmotropes shift from their usual position in the Hofmeister series and behave like moderate chaotropes, lowering the T K of the surfactant. Because of the high charge density and the strong tendency for hydration these ions preferentially remain in the bulk. Rather than forming contact ion pairs, these ions stay away from the CPB molecules, decreasing the T K of the surfactant. In term of decreasing the T K, the ions follow the order NO3 ?/sup>?>?SO4 2?/sup>?>?Cl?/sup>?>?F?/sup>?>?Br?/sup>?>?SCN?/sup>?>?I?/sup>. The critical micelle concentration (CMC) of the surfactant decreases significantly in the presence of these ions due to the screening of the micelle surface charge by the excess counterions. The decreasing trend of the CMC in the presence of the salts follows the order SCN?/sup>?>?I?/sup>?>?SO4 2?/sup>?>?NO3 ?/sup>?>?Br?/sup>?>?Cl?/sup>?>?F?/sup>.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700