Half-Space Problems for a Linearized Discrete Quantum Kinetic Equation
详细信息    查看全文
  • 作者:Niclas Bernhoff (1)

    1. Department of Mathematics and Computer Science
    ; Karlstad University ; 651 88 ; Karlstad ; Sweden
  • 关键词:Bose鈥揈instein condensate ; Low temperature kinetics ; Discrete kinetic equation ; Milne problem ; Kramer problem
  • 刊名:Journal of Statistical Physics
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:159
  • 期:2
  • 页码:358-379
  • 全文大小:256 KB
  • 参考文献:1. Arkeryd, L (2013) On low temperature kinetic theory; spin diffusion, Bose鈥揈instein condensates, anyons. J. Stat. Phys. 150: pp. 1063-1079 CrossRef
    2. Arkeryd, L, Nouri, A (2013) A Milne problem from a Bose condensate with excitations. Kinet. Relat. Models 6: pp. 671-686 CrossRef
    3. Bardos, C, Caflisch, RE, Nicolaenko, B (1986) The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas. Comm. Pure Appl. Math. 39: pp. 323-352 CrossRef
    4. Bardos, C, Golse, F, Sone, Y (2006) Half-space problems for the Boltzmann equation: a survey. J. Stat. Phys. 124: pp. 275-300 CrossRef
    5. Bernhoff, N (2008) On half-space problems for the linearized discrete Boltzmann equation. Riv. Mat. Univ. Parma 9: pp. 73-124
    6. Bernhoff, N (2010) On half-space problems for the weakly non-linear discrete Boltzmann equation. Kinet. Relat. Models 3: pp. 195-222 CrossRef
    7. Bernhoff, N, Bobylev, A (2007) Weak shock waves for the general discrete velocity model of the Boltzmann equation. Commun. Math. Sci. 5: pp. 815-832 CrossRef
    8. Bhaduri, RK, Bhalerao, RS, Murthy, MVN (1996) Haldane exclusion statistics and the Boltzmann equation. J. Stat. Phys. 82: pp. 1659-1668 CrossRef
    9. Bobylev, A.V., Bernhoff, N.: Discrete velocity models and dynamical systems. In: N. Bellomo, R. Gatignol (eds.) Lecture Notes on the Discretization of the Boltzmann Equation, pp. 203鈥?22. World Scientific, Singapore (2003)
    10. Bobylev, AV, Cercignani, C (1999) Discrete velocity models without non-physical invariants. J. Stat. Phys. 97: pp. 677-686 CrossRef
    11. Bobylev, A.V., Palczewski, A., Schneider, J.: On approximation of the Boltzmann equation by discrete velocity models. C. R. Acad. Sci. Paris S茅r. I Math. 320, 639鈥?44 (1995)
    12. Bobylev, AV, Vinerean, MC (2008) Construction of discrete kinetic models with given invariants. J. Stat. Phys. 132: pp. 153-170 CrossRef
    13. Bobylev, AV, Vinerean, MC, Windf盲ll, 脜 (2010) Discrete velocity models of the Boltzmann equation and conservation laws. Kinet. Relat. Models 3: pp. 35-58 CrossRef
    14. Cabannes, H.: The discrete Boltzmann equation (1980, 2003). Lecture notes given at the University of California at Berkeley, : revised with R. Gatignol and L-S, Luo (1980). 2003
    15. Cercignani, C.: The Boltzmann Equation and its Applications. Springer, Berlin (1988).
    16. Cercignani, C.: Rarefied Gas Dynamics. Cambridge University Press, Cambridge (2000)
    17. Coron, F, Golse, F, Sulem, C (1988) A classification of well-posed kinetic layer problems. Comm. Pure Appl. Math. 41: pp. 409-435 CrossRef
    18. Fainsilber, L, Kurlberg, P, Wennberg, B (2006) Lattice points on circles and discrete velocity models for the Boltzmann equation. Siam J. Math. Anal. 37: pp. 1903-1922 CrossRef
    19. Golse, F (2008) Analysis of the boundary layer equation in the kinetic theory of gases. Bull. Inst. Math. Acad. Sin. 3: pp. 211-242
    20. Golse, F, Poupaud, F (1989) Stationary solutions of the linearized Boltzmann equation in a halfspace. Math. Methods Appl. Sci. 11: pp. 483-502 CrossRef
    21. Kawashima, S, Nishibata, S (1999) Existence of a stationary wave for the discrete Boltzmann equation in the half space. Comm. Math. Phys. 207: pp. 385-409 CrossRef
    22. Kawashima, S, Nishibata, S (2000) Stationary waves for the discrete Boltzmann equation in the half space with reflective boundaries. Comm. Math. Phys. 211: pp. 183-206 CrossRef
    23. Kirkpatrick, TR, Dorfman, JR (1985) Transport in a dilute but condensed nonideal Bose gas: kinetic equations. J. Low Temp. Phys. 58: pp. 301-331 CrossRef
    24. Nordheim, LW (1928) On the kinetic methods in the new statistics and its applications in the electron theory of conductivity. Proc. Roy. Soc. London Ser. A 119: pp. 689-698 CrossRef
    25. Palczewski, A, Schneider, J, Bobylev, AV (1997) A consistency result for a discrete-velocity model of the Boltzmann equation. SIAM J. Numer. Anal. 34: pp. 1865-1883 CrossRef
    26. Sone, Y.: Kinetic Theory and Fluid Dynamics. Birkh盲user, Basel (2002)
    27. Sone, Y.: Molecular Gas Dynamics. Birkh盲user, Basel (2007)
    28. Uehling, EA, Uhlenbeck, GE (1933) Transport phenomena in Einstein-Bose and Fermi-Dirac gases. Phys. Rev. 43: pp. 552-561 CrossRef
    29. Ukai, S.: On the half-space problem for the discrete velocity model of the Boltzmann equation. In: S. Kawashima, T. Yanagisawa (eds.) Advances in Nonlinear Partial Differential Equations and Stochastics, pp. 160鈥?74. World Scientific, Singapore (1998)
    30. Ukai, S, Yang, T, Yu, SH (2003) Nonlinear boundary layers of the Boltzmann equation: I. Existence. Comm. Math. Phys. 236: pp. 373-393 CrossRef
    31. Wu, Y-S (1994) Statistical distribution for generalized ideal gas of fractional-statistics particles. Phys. Rev. Lett. 73: pp. 922-925 CrossRef
    32. Yang, X (2011) The solutions for the boundary layer problem of Boltzmann equation in a halfspace. J. Stat. Phys. 143: pp. 168-196 CrossRef
    33. Zaremba, E, Nikuni, T, Griffin, A (1999) Dynamics of trapped Bose gases at finite temperatures. J. Low Temp. Phys. 116: pp. 277-345 CrossRef
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Statistical Physics
    Mathematical and Computational Physics
    Physical Chemistry
    Quantum Physics
  • 出版者:Springer Netherlands
  • ISSN:1572-9613
文摘
We study typical half-space problems of rarefied gas dynamics, including the problems of Milne and Kramer, for a general discrete model of a quantum kinetic equation for excitations in a Bose gas. In the discrete case the plane stationary quantum kinetic equation reduces to a system of ordinary differential equations. These systems are studied close to equilibrium and are proved to have the same structure as corresponding systems for the discrete Boltzmann equation. Then a classification of well-posed half-space problems for the homogeneous, as well as the inhomogeneous, linearized discrete kinetic equation can be made. The number of additional conditions that need to be imposed for well-posedness is given by some characteristic numbers. These characteristic numbers are calculated for discrete models axially symmetric with respect to the x-axis. When the characteristic numbers change is found in the discrete as well as the continuous case. As an illustration explicit solutions are found for a small-sized model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700