Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems
详细信息    查看全文
  • 作者:Xiaoping Chen ; Zhixiang Zhang ; Lina Chi ; Aathira Krishnadas Nair
  • 关键词:Photoelectrochemical water splitting ; Nanostructures ; Reaction system ; Heterojuction ; Hybrid systems
  • 刊名:Nano-Micro Letters
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:8
  • 期:1
  • 页码:1-12
  • 全文大小:1,899 KB
  • 参考文献:1.A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972). doi:10.​1038/​238037a0 CrossRef
    2.Y. Li, J.Z. Zhang, Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photonics Rev. 4(4), 517–528 (2010). doi:10.​1002/​lpor.​200910025 MATH CrossRef
    3.Y.R. Steven, A.H. Jonathan, S. Kimberly, D.J. Thomas, J.E. Arthur, J.H. Joep, G.N. Daniel, Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334(6056), 645–648 (2011). doi:10.​1126/​science.​1209816 CrossRef
    4.N.A. Kelly, T.L. Gibson, Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting. Int. J. Hydrog. Energ. 31(12), 1658–1673 (2006). doi:10.​1016/​j.​ijhydene.​2005.​12.​014 CrossRef
    5.L.J. Minggu, W.R.W. Daud, M.B. Kassim, An overview of photocells and photoreactors for photoelectrochemical water splitting. Int. J. Hydrog. Energ. 35(11), 5233–5244 (2010). doi:10.​1016/​j.​ijhydene.​2010.​02.​133 CrossRef
    6.A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38(1), 253–278 (2009). doi:10.​1039/​B800489G CrossRef
    7.W.F. Shangguan, Progress in research of hydrogen production from water on photocatalysts with solar energy. Chinese J. Inorg. Chem. 17(5), 619–626 (2001)
    8.Q. Li, B.D. Guo, J.G. Yu, J.R. Ran, B.H. Zhang, H.J. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheet. JACS 133(28), 10878–10884 (2011). doi:10.​1021/​ja2025454 CrossRef
    9.X. Chen, W. Shangguan, Hydrogen production from water splitting on CdS-based photocatalysts using solar light. Front. Energy 7(1), 111–118 (2013). doi:10.​1007/​s11708-012-0228-4 MATH CrossRef
    10.X. Chen, W. Chen, P.B. Lin, Y. Yang, H.Y. Gao, J. Yuan, W. Shangguan, In situ photodeposition of nickel oxides on CdS for highly efficient hydrogen production via visible-light-driven photocatalysis. Catal. Commun. 36, 104–108 (2013). doi:10.​1016/​j.​catcom.​2013.​03.​016 CrossRef
    11.X. Chen, W. Chen, H.Y. Gao, Y. Yang, W. Shangguan, In situ photodeposition of NiOx on CdS for hydrogen production under visible light: enhanced activity by controlling solution environment. Appl. Catal. B-Environ. 152, 68–72 (2014). doi:10.​1016/​j.​apcatb.​2014.​01.​022 CrossRef
    12.A. Iwase, Y.H. Ng, R. Amal, A. Kudo, Solar hydrogen evolution using CuGaS2 photocathode improved by incorporating reduced graphene oxide. J. Mater. Chem. A 3, 8566–8570 (2015). doi:10.​1039/​C5TA01237F CrossRef
    13.Y. Moriya, T. Takata, K. Domen, Recent progress in the development of (Oxy) nitride photocatalysts for water splitting under visible-light irradiation. Coordin. Chem. Rev. 257(13), 1957–1969 (2013). doi:10.​1016/​j.​ccr.​2013.​01.​021 CrossRef
    14.K. Maeda, K. Domen, Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1(18), 2655–2661 (2010). doi:10.​1021/​jz1007966 CrossRef
    15.T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014). doi:10.​1039/​C3CS60378D CrossRef
    16.T.W. Kim, K.S. Choi, Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343(6174), 990–994 (2014). doi:10.​1126/​science.​1246913 CrossRef
    17.X. Liu, F. Wang, Q. Wang, Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys. Chem. Cheml. Phys. 14(22), 7894–7911 (2012). doi:10.​1039/​c2cp40976c CrossRef
    18.M. Moriya, T. Minegishi, H. Kumagai, M. Katayama, J. Kubota, K. Domen, Stable hydrogen evolution from CdS-modified CuGaSe2 photoelectrode under visible-light irradiation. JACS 135(10), 3733–3735 (2013). doi:10.​1021/​ja312653y CrossRef
    19.Q.Y. Zeng, J. Bai, J.H. Li, Y.P. Li, X.J. Li, B.X. Zhou, Combined nanostructured Bi2S3/TNA photoanode and Pt/SiPVC photocathode for efficient self-biasing photoelectrochemical hydrogen and electricity generation. Nano Energy 9, 152–160 (2014). doi:10.​1016/​j.​nanoen.​2014.​06.​023 CrossRef
    20.K. Sivula, F.L. Formal, M. Grätzel, Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chem. Sus. Chem. 4(4), 432–449 (2011). doi:10.​1002/​cssc.​201000416 CrossRef
    21.S. Yamane, N. Kato, S. Kojima, A. Imanishi, S. Ogawa, N. Yoshida, S. Nonomura, Y. Nakato, Efficient solar water splitting with a composite “n-Si/p-CuI/nip a-Si/np GaP/RuO2” semiconductor electrode. J. Phys. Chem. C 113(32), 14575–14581 (2009). doi:10.​1021/​jp904297v CrossRef
    22.D.J. Martin, P.J.T. Reardon, S.J.A. Moniz, J.W. Tang, Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. JACS 136(36), 12568–12571 (2014). doi:10.​1021/​ja506386e CrossRef
    23.S.U. Khan, M. Al-Shahry, W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297(5590), 2243–2245 (2002). doi:10.​1126/​science.​1075035 CrossRef
    24.Y.R. Smith, B. Sarma, S.K. Mohanty, M. Misra, Single-step anodization for synthesis of hierarchical TiO2 nanotube arrays onfoil and wire substrate for enhanced photoelectrochemical water splitting. Int. J. Hydrog. Energ. 38(5), 2062–2069 (2013). doi:10.​1016/​j.​ijhydene.​2012.​11.​045 CrossRef
    25.C. Cheng, H. Zhang, W. Ren, W. Dong, Y. Sun, Three dimensional urchin-like ordered hollow TiO2/ZnO nanorods structure as efficient photoelectrochemical anode. Nano Energy 2(5), 779–786 (2013). doi:10.​1016/​j.​nanoen.​2013.​01.​010 CrossRef
    26.Q. Gang, Akira watanabe, surface texturing of TiO2 film by mist deposition of TiO2 nanoparticles. Nano-Micro Lett. 5(2), 129–134 (2013). doi:10.​1007/​BF03353740 MathSciNet CrossRef
    27.Z. Su, W. Zhou, F. Jiang, M. Hong, Anodic formation of nanoporous and nanotubular metal oxides. J. Mater. Chem. 22(2), 535–544 (2012). doi:10.​1039/​C1JM13338A CrossRef
    28.Y.R. Smith, R.S. Ray, K. Carlson, B. Sarma, M. Misra, Self-ordered titanium dioxide nanotube arrays: anodic synthesis and their photo/electro-catalytic applications. Materials 6(7), 2892–2957 (2013). doi:10.​3390/​ma6072892 CrossRef
    29.O.K. Varghese, M. Paulose, C.A. Grimes, Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 4(9), 592–597 (2009). doi:10.​1038/​nnano.​2009.​226 CrossRef
    30.X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 8(11), 3781–3786 (2008). doi:10.​1021/​nl802096a CrossRef
    31.M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11(3), 401–425 (2007). doi:10.​1016/​j.​rser.​2005.​01.​009 CrossRef
    32.S. In, A. Orlov, R. Beng, F. Garcia, S.P. Jimenez, M.S. Tikhov, D.S. Wright, R.M. Lambert, Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. JACS 129(45), 13790–13791 (2007). doi:10.​1021/​ja0749237 CrossRef
    33.S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115(46), 13211–13241 (2011). doi:10.​1021/​jp204364a CrossRef
    34.Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, X. Zhu, Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand. Adv. Mater. 20(5), 1044–1049 (2008). doi:10.​1002/​adma.​200701619 CrossRef
    35.J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6(1), 24–28 (2006). doi:10.​1021/​nl051807y CrossRef
    36.J. Xu, Y. Ao, M. Chen, D. Fu, Photoelectrochemical property and photocatalytic activity of N-doped TiO2 nanotube arrays. Appl. Surf. Sci. 256(13), 4397–4401 (2010). doi:10.​1016/​j.​apsusc.​2010.​02.​037 CrossRef
    37.X. Tang, D. Li, Sulfur-doped highly ordered TiO2 nanotubular arrays with visible light response. J. Phys. Chem. C 112(14), 5405–5409 (2008). doi:10.​1021/​jp710468a CrossRef
    38.N. Lu, H. Zhao, J. Li, X. Quan, S. Chen, Characterization of boron-doped TiO2 nanotube arrays prepared by electrochemical method and its visible light activity. Sep. Purif. Technol. 62(3), 668–673 (2008). doi:10.​1016/​j.​seppur.​2008.​03.​021 CrossRef
    39.R. Liang, A. Hu, J. Persic, Y.N. Zhou, Palladium nanoparticles loaded on carbon modified TiO2 nanobelts for enhanced methanol electrooxidation. Nano-Micro Lett. 5(3), 202–212 (2013). doi:10.​1007/​BF03353751 CrossRef
    40.Y. Pu, G. Wang, K. Chang, Y. Ling, Y. Lin, B. Fitzmorris, C. Liu, X. Lu, Y. Tong, J. Zhang, Y. Hsu, Y. Li, Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 13(8), 3817–3823 (2013). doi:10.​1021/​nl4018385 CrossRef
    41.H.J. Kim, S.H. Lee, A.A. Upadhye, I. Ro, M.I. Tejedor-Tejedor, M.A. Anderson, W.B. Kim, G.W. Huber, Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays. ACS Nano 8(10), 10756–10765 (2014). doi:10.​1021/​nn504484u CrossRef
    42.X. Zhang, Y. Liu, Z. Kang, 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl. Mater. Interf. 6(6), 4480–4489 (2014). doi:10.​1021/​am500234v CrossRef
    43.J.A. Seabold, K. Shankar, R.H.T. Wilke, M. Paulose, O.K. Varghese, C.A. Grimes, K. Choi, Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 nanotube arrays. Chem. Mater. 20(16), 5266–5273 (2008). doi:10.​1021/​cm8010666 CrossRef
    44.L. Yang, S. Luo, Y. Li, Y. Xiao, Q. Kang, Q. Cai, High efficient photocatalytic degradation of p–nitrophenol on a unique Cu2O/TiO2 p–n heterojunction network catalyst. Environ. Sci. Technol. 44(19), 7641–7646 (2010). doi:10.​1021/​es101711k CrossRef
    45.W. Siripala, A. Ivanovskaya, T.F. Jaramillo, S. Baeck, E.W. McFarland, A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Sol. Energy Mat. Sol. C 77(3), 229–237 (2003). doi:10.​1016/​S0927-0248(02)00343-4 CrossRef
    46.X. Gao, W. Sun, Z. Hu, G. Ai, Y. Zhang, S. Feng, F. Li, L. Peng, An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films. J. Phys. Chem. C 113(47), 20481–20485 (2009). doi:10.​1021/​jp904320d CrossRef
    47.Q.C. Xu, D.V. Wellia, Y.H. Ng, R. Amal, T.T.Y. Tan, Synthesis of porous and visible-light absorbing Bi2WO6/TiO2 heterojunction films with improved photoelectrochemical and photocatalytic performances. J. Phys. Chem. C 115(15), 7419–7428 (2011). doi:10.​1021/​jp1090137 CrossRef
    48.J. Zhang, J.H. Bang, C. Tang, P.V. Kamat, Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4(1), 387–395 (2010). doi:10.​1021/​nn901087c CrossRef
    49.C. Cheng, S.K. Karuturi, L. Liu, J. Liu, H. Li, L.T. Su, A.I.Y. Tok, H.J. Fan, Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. Small 8(1), 37–42 (2012). doi:10.​1002/​smll.​201101660 CrossRef
    50.H. Kim, J. Kim, W. Kim, W. Choi, Enhanced photocatalytic and photoelectrochemical activity in the ternary hybrid of CdS/TiO2/WO3 through the cascadal electron transfer. J. Phys. Chem. C 115(19), 9797–9805 (2011). doi:10.​1021/​jp1122823 CrossRef
    51.G. Wang, Y. Ling, Y. Li, Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 4(21), 6682–6691 (2012). doi:10.​1039/​c2nr32222f CrossRef
    52.G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11(7), 3026–3033 (2011). doi:10.​1021/​nl201766h CrossRef
    53.U. Diebolda, J. Lehmana, T. Mahmouda, M. Kuhna, G. Leonardellib, W. Hebenstreitb, M. Schmidb, P. Vargab, Intrinsic defects on a TiO2 (110)(1 × 1) surface and their reaction with oxygen: a scanning tunneling microscopy study. Surf. Sci. 411(1), 137–153 (1998). doi:10.​1016/​S0039-6028(98)00356-2 CrossRef
    54.Q. Jia, K. Iwashina, A. Kudo, Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation. P. Natl. Acad Sci. USA 109(29), 11564–11569 (2012). doi:10.​1073/​pnas.​1204623109 CrossRef
    55.A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv. Funct. Mater. 19(12), 1849–1856 (2009). doi:10.​1002/​adfm.​200801363 CrossRef
    56.X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, Y. Li, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9(6), 2331–2336 (2009). doi:10.​1021/​nl900772q CrossRef
    57.P. Cai, S. Zhou, D. Ma, S. Liu, W. Chen, S. Huang, Fe2O3-modified porous BiVO4 nanoplates with enhanced photocatalytic activity. Nano-Micro Lett. 7(2), 183–193 (2015). doi:10.​1007/​s40820-015-0033-9 CrossRef
    58.J. Su, L. Guo, N. Bao, C.A. Grimes, Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11(5), 1928–1933 (2011). doi:10.​1021/​nl2000743 CrossRef
    59.Y.H. Ng, A. Iwase, A. Kudo, R. Amal, Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water Splitting. J. Phys. Chem. Lett. 1(17), 2607–2612 (2010). doi:10.​1021/​jz100978u CrossRef
    60.W.D. Chemelewski, H. Lee, J. Lin, A.J. Bard, C.B. Mullins, Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. JACS 136(7), 2843–2850 (2014). doi:10.​1021/​ja411835a CrossRef
    61.M. Shao, F. Ning, M. Wei, D.G. Evans, X. Duan, Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Adv. Funct. Mater. 24(5), 580–586 (2014). doi:10.​1002/​adfm.​201301889 CrossRef
    62.R. Xie, J. Su, L. Guo, Ag2S/CdS nanorod-array heterojunctions for efficient photoelectrochemical water splitting. Int. J. Nanotechnol. 10(12), 1115–1128 (2013). doi:10.​1504/​IJNT.​2013.​058569 CrossRef
    63.G. Wang, X. Yang, F. Qian, J.Z. Zhang, Y. Li, Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett. 10(3), 1088–1092 (2010). doi:10.​1021/​nl100250z CrossRef
    64.A.A. Tahir, M.A. Ehsan, M. Mazhar, K.G.U. Wijayantha, M. Zeller, A.D. Hunter, Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films. Chem. Mater. 22(17), 5084–5092 (2010). doi:10.​1021/​cm101642b CrossRef
    65.R. Abe, M. Higashi, K. Domen, Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. JACS 132(34), 11828–11829 (2010). doi:10.​1021/​ja1016552 CrossRef
    66.M. Higashi, K. Domen, R. Abe, Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. JACS 134(16), 6968–6971 (2012). doi:10.​1021/​ja302059g CrossRef
    67.M. Higashi, K. Domen, R. Abe, Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy Environ. Sci. 4(10), 4138–4147 (2011). doi:10.​1039/​c1ee01878g CrossRef
    68.F. Su, J. Lu, Y. Tian, X. Ma, J. Gong, Branched TiO2 nanoarrays sensitized with CdS quantum dots for highly efficient photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 15(29), 12026–12032 (2013). doi:10.​1039/​c3cp51291f CrossRef
    69.X. Cheng, G. Pan, X. Yu, T. Zheng, Preparation of CdS NCs decorated TiO2 nano-tubes arrays photoelectrode and its enhanced photoelectrocatalytic performance and mechanism. Electrochim. Acta 105, 535–541 (2013). doi:10.​1016/​j.​electacta.​2013.​05.​040 CrossRef
    70.J. Nian, C.C. Hu, H. Teng, Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination. Int. J. Hydrogen Energ. 33(12), 2897–2903 (2008). doi:10.​1016/​j.​ijhydene.​2008.​03.​052 CrossRef
    71.A. Shalom, A. Heller, Efficient p-InP (Rh-H alloy) and p-InP (Re-H Alloy) hydrogen evolving photocathodes. J. Electrochem. Soc. 129(12), 2865–2866 (1982). doi:10.​1149/​1.​2123695 CrossRef
    72.O. Khaselev, J.A. Turner, Electrochemical stability of p-GaInP2 in aqueous electrolytes toward photoelectrochemical water splitting. J. Electrochem. Soc. 145(10), 3335–3339 (1998). doi:10.​1149/​1.​1838808 CrossRef
    73.O. Khaselev, J.A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280(5362), 425–427 (1998). doi:10.​1126/​science.​280.​5362.​425 CrossRef
    74.W. Gunawan, S. Septina, T. Ikeda, T. Harada, K. Minegishi, M. Domen, Matsumura, Platinum and indium sulfide-modified CuInS2 as efficient photocathodes for photoelectrochemical water splitting. Chem. Commun. 50(64), 8941–8943 (2014). doi:10.​1039/​C4CC03634D CrossRef
    75.T. Kameyama, T. Osaki, K. Okazaki, T. Shibayama, A. Kudo, S. Kuwabata, T. Torimoto, Preparation and photoelectrochemical properties of densely immobilized Cu2ZnSnS4 nanoparticle films. J. Mater. Chem. 20(25), 5319–5324 (2010). doi:10.​1039/​c0jm00454e CrossRef
    76.D. Yokoyama, T. Minegishi, K. Maeda, M. Katayama, J. Kubota, A. Yamada, M. Konagai, K. Domen, Photoelectrochemical water splitting using a Cu(In, Ga)Se2 thin film. Electrochem. Commun. 12(6), 851–853 (2010). doi:10.​1016/​j.​elecom.​2010.​04.​004 CrossRef
    77.C.C. Hu, J.N. Nian, H. Teng, Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3. Sol. Energy Mat. Sol. C 92(9), 1071–1076 (2008). doi:10.​1016/​j.​solmat.​2008.​03.​012 CrossRef
    78.C.M. McShane, K.S. Choi, Junction studies on electrochemically fabricated p–n Cu2O homojunction solar cells for efficiency enhancement. Phys. Chem. Chem. Phys. 14(17), 6112–6118 (2012). doi:10.​1039/​c2cp40502d CrossRef
    79.T. Jiang, T. Xie, W. Yang, L. Chen, H. Fan, D. Wang, Photoelectrochemical and photovoltaic properties of p–n Cu2O homojunction films and their photocatalytic performance. J. Phys. Chem. C 117(9), 4619–4624 (2013). doi:10.​1021/​jp311532s CrossRef
    80.A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10(6), 456–461 (2011). doi:10.​1038/​nmat3017 CrossRef
    81.R.N. Dominey, N.S. Lewis, J.A. Bruce, D.C. Bookbinder, M.S. Wrighton, Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes. JACS 104(2), 467–482 (1982). doi:10.​1021/​ja00366a016 CrossRef
    82.S.W. Boettcher, E.L. Warren, M.C. Putnam, E.A. Santori, D.T. Evans et al., Photoelectrochemical hydrogen evolution using Si microwire arrays. JACS 133(5), 1216–1219 (2011). doi:10.​1021/​ja108801m CrossRef
    83.S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto, T. Ishihara, Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. JACS 132(49), 17343–17345 (2010). doi:10.​1021/​ja106930f CrossRef
    84.H. Wang, T. Deutsch, J.A. Turner, Direct water splitting under visible light with nanostructured hematite and WO3 photoanodes and a GaInP2 photocathode. J. Electrochem. Soc. 155(5), F91–F96 (2008). doi:10.​1149/​1.​2888477 CrossRef
  • 作者单位:Xiaoping Chen (1) (2)
    Zhixiang Zhang (1) (2)
    Lina Chi (2) (3)
    Aathira Krishnadas Nair (2)
    Wenfeng Shangguan (1)
    Zheng Jiang (2)

    1. Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
    2. Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
    3. School of Environmental Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
  • 刊物类别:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 刊物主题:Nanotechnology and Microengineering; Nanotechnology; Nanoscale Science and Technology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2150-5551
文摘
Photoelectrochemical (PEC) water splitting using solar energy has attracted great attention for generation of renewable hydrogen with less carbon footprint, while there are enormous challenges that still remain for improving solar energy water splitting efficiency, due to limited light harvesting, energy loss associated to fast recombination of photogenerated charge carriers, as well as electrode degradation. This overview focuses on the recent development about catalyst nanomaterials and nanostructures in different PEC water splitting systems. As photoanode, Au nanoparticle-decorated TiO2 nanowire electrodes exhibited enhanced photoactivity in both the UV and the visible regions due to surface plasmon resonance of Au and showed the largest photocurrent generation of up to 710 nm. Pt/CdS/CGSe electrodes were developed as photocathode. With the role of p–n heterojunction, the photoelectrode showed high stability and evolved hydrogen continuously for more than 10 days. Further, in the Z-scheme system (Bi2S3/TNA as photoanode and Pt/SiPVC as photocathode at the same time), a self-bias (open-circuit voltage V oc = 0.766 V) was formed between two photoelectrodes, which could facilitate photogenerated charge transfers and enhance the photoelectrochemical performance, and which might provide new hints for PEC water splitting. Meanwhile, the existing problems and prospective solutions have also been reviewed. Keywords Photoelectrochemical water splitting Nanostructures Reaction system Heterojuction Hybrid systems

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700