Molecular dynamics simulation studies and in vitro site directed mutagenesis of avian beta-defensin Apl_AvBD2
详细信息    查看全文
  • 作者:Soja Saghar Soman (1)
    Krishnankutty Chandrika Sivakumar (2)
    Easwaran Sreekumar (1)
  • 刊名:BMC Bioinformatics
  • 出版年:2010
  • 出版时间:January 2010
  • 年:2010
  • 卷:11
  • 期:1-supp
  • 全文大小:3387KB
  • 参考文献:1. Zasloff M: plus-plus">Antimicrobial peptides of multicellular organisms. / Nature 2002,plus-plus">415(6870)plus-plus">:389-95. p://dx.doi.org/10.1038/415389a">CrossRef
    2. Suresh A, Verma C: plus-plus">Modelling study of dimerization in mammalian defensins. / BMC Bioinformatics 2006,plus-plus">7(Suppl 5)plus-plus">:S17. p://dx.doi.org/10.1186/1471-2105-7-S5-S17">CrossRef
    3. Jenssen H, Hamill P, Hancock RE: plus-plus">Peptide antimicrobial agents. / Clin Microbiol Rev 2006,plus-plus">19(3)plus-plus">:491-11. p://dx.doi.org/10.1128/CMR.00056-05">CrossRef
    4. Hancock RE: plus-plus">Peptide antibiotics. / Lancet 1997,plus-plus">349(9049)plus-plus">:418-22. p://dx.doi.org/10.1016/S0140-6736(97)80051-7">CrossRef
    5. Yeaman MR, Yount NY: plus-plus">Mechanisms of antimicrobial peptide action and resistance. / Pharmacol Rev 2003,plus-plus">55(1)plus-plus">:27-5. p://dx.doi.org/10.1124/pr.55.1.2">CrossRef
    6. Soman SS, Arathy DS, Sreekumar E: plus-plus">Discovery of Anas platyrhynchos avian beta-defensin 2 (Apl_AvBD2) with antibacterial and chemotactic functions. / Mol Immunol 2009,plus-plus">46(10)plus-plus">:2029-038. p://dx.doi.org/10.1016/j.molimm.2009.03.003">CrossRef
    7. Soman SS, Nair S, Issac A, Arathy DS, Niyas KP, Anoop M, Sreekumar E: plus-plus">Immunomodulation by duck defensin, Apl_AvBD2: In vitro dendritic cell immunoreceptor (DCIR) mRNA suppression, and B- and T-lymphocyte chemotaxis. / Mol Immunol 2009, plus-plus">46:3070-075. doi:10.1016/j.molimm.2009.06.003 p://dx.doi.org/10.1016/j.molimm.2009.06.003">CrossRef
    8. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: plus-plus">Basic local alignment search tool. / J Mol Biol 1990,plus-plus">215(3)plus-plus">:403-10.
    9. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: plus-plus">Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. / Nucleic Acids Res 1997,plus-plus">25(17)plus-plus">:3389-402. p://dx.doi.org/10.1093/nar/25.17.3389">CrossRef
    10. Hall TA: plus-plus">BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. / Nucl Acids Symp Ser 1999, plus-plus">41:95-8.
    11. Sali A, Blundell TL: plus-plus">Comparative protein modelling by satisfaction of spatial restraints. / J Mol Biol 1993,plus-plus">234(3)plus-plus">:779-15. p://dx.doi.org/10.1006/jmbi.1993.1626">CrossRef
    12. Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC: plus-plus">GROMACS: Fast, Flexible and Free. / J Comput Chem 2005, plus-plus">26:1701-718. p://dx.doi.org/10.1002/jcc.20291">CrossRef
    13. Sippl MJ: plus-plus">Recognition of errors in three-dimensional structures of proteins. / Proteins 1993,plus-plus">17(4)plus-plus">:355-62. p://dx.doi.org/10.1002/prot.340170404">CrossRef
    14. Duhovny D, Nussinov R, Wolfson HJ: plus-plus">Efficient Unbound Docking of Rigid Molecules. In / Proceedings of the 2'nd Workshop on Algorithms in Bioinformatics(WABI) Rome, Italy, Lecture Notes in Computer Science Edited by: Gusfield, et al. 2002, 185-00.
    15. DeLano WL: plus-plus">The PyMOL Molecular Graphics System. [p://www.pymol.org" class="a-plus-plus">http://www.pymol.org] DeLano Scientific, San Carlos, CA, USA; 2002.
    16. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML: plus-plus">Comparison of simple potential functions for simulating liquid water. / J Chem Phys 1983, plus-plus">79:926-35. p://dx.doi.org/10.1063/1.445869">CrossRef
    17. Turner PJ: / XMGRACE, Version 5.1.19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, OR; 2005.
    18. Stark M, Liu LP, Deber CM: plus-plus">Cationic hydrophobic peptides with antimicrobial activity. / Antimicrob Agents Chemother 2002,plus-plus">46(11)plus-plus">:3585-590. p://dx.doi.org/10.1128/AAC.46.11.3585-3590.2002">CrossRef
    19. Glukhov E, Stark M, Burrows LL, Deber CM: plus-plus">Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. / J Biol Chem 2005,plus-plus">280(40)plus-plus">:33960-3967. p://dx.doi.org/10.1074/jbc.M507042200">CrossRef
    20. Kluver E, Adermann K, Schulz A: plus-plus">Synthesis and structure-activity relationship of beta-defensins, multi-functional peptides of the immune system. / J Pept Sci 2006,plus-plus">12(4)plus-plus">:243-57. p://dx.doi.org/10.1002/psc.749">CrossRef
    21. Hoover DM, Chertov O, Lubkowski J: plus-plus">The structure of human beta-defensin-1: new insights into structural properties of beta-defensins. / J Biol Chem 2001,plus-plus">276(42)plus-plus">:39021-9026. p://dx.doi.org/10.1074/jbc.M103830200">CrossRef
  • 作者单位:Soja Saghar Soman (1)
    Krishnankutty Chandrika Sivakumar (2)
    Easwaran Sreekumar (1)

    1. Molecular Virology Laboratory, Department of Molecular Microbiology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram, 695014, Kerala, India
    2. Bioinformatics facility, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram, 695014, Kerala, India
  • ISSN:1471-2105
文摘
Background Defensins comprise a group of antimicrobial peptides, widely recognized as important elements of the innate immune system in both animals and plants. Cationicity, rather than the secondary structure, is believed to be the major factor defining the antimicrobial activity of defensins. To test this hypothesis and to improve the activity of the newly identified avian β-defensin Apl_AvBD2 by enhancing the cationicity, we performed in silico site directed mutagenesis, keeping the predicted secondary structure intact. Molecular dynamics (MD) simulation studies were done to predict the activity. Mutant proteins were made by in vitro site directed mutagenesis and recombinant protein expression, and tested for antimicrobial activity to confirm the results obtained in MD simulation analysis. Results MD simulation revealed subtle, but critical, structural variations between the wild type Apl_AvBD2 and the more cationic in silico mutants, which were not detected in the initial structural prediction by homology modelling. The C-terminal cationic 'claw' region, important in antimicrobial activity, which was intact in the wild type, showed changes in shape and orientation in all the mutant peptides. Mutant peptides also showed increased solvent accessible surface area and more number of hydrogen bonds with the surrounding water molecules. In functional studies, the Escherichia coli expressed, purified recombinant mutant proteins showed total loss of antimicrobial activity compared to the wild type protein. Conclusion The study revealed that cationicity alone is not the determining factor in the microbicidal activity of antimicrobial peptides. Factors affecting the molecular dynamics such as hydrophobicity, electrostatic interactions and the potential for oligomerization may also play fundamental roles. It points to the usefulness of MD simulation studies in successful engineering of antimicrobial peptides for improved activity and other desirable functions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700