Effects of EpCAM overexpression on human breast cancer cell lines
详细信息    查看全文
  • 作者:Johanna M Gostner (1)
    Dominic Fong (1) (2)
    Oliver A Wrulich (3)
    Florian Lehne (1)
    Marion Zitt (1)
    Martin Hermann (4)
    Sylvia Krobitsch (5)
    Agnieszka Martowicz (1)
    Guenther Gastl (1) (2)
    Gilbert Spizzo (1) (2) (6)
  • 刊名:BMC Cancer
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:11
  • 期:1
  • 全文大小:2235KB
  • 参考文献:1. Tandon AK, Clark GM, Chamness GC, McGuire WL: Association of the 323/A3 surface glycoprotein with tumor characteristics and behavior in human breast cancer. / Cancer Res 1990, 50:3317-321.
    2. Gastl G, Spizzo G, Obrist P, Dunser M, Mikuz G: Ep-CAM overexpression in breast cancer as a predictor of survival. / Lancet 2000, 356:1981-982. CrossRef
    3. Spizzo G, Went P, Dirnhofer S, Obrist P, Simon R, Spichtin H, Maurer R, Metzger U, Von Castelberg B, Bart R, / et al.: High Ep-CAM Expression is Associated with Poor Prognosis in Node-positive Breast Cancer. / Breast Cancer Res Treat 2004, 86:207-13. CrossRef
    4. Schmidt M, Hasenclever D, Schaeffer M, Boehm D, Cotarelo C, Steiner E, Lebrecht A, Siggelkow W, Weikel W, Schiffer-Petry I, / et al.: Prognostic effect of epithelial cell adhesion molecule overexpression in untreated node-negative breast cancer. / Clin Cancer Res 2008, 14:5849-855. CrossRef
    5. Spizzo G, Obrist P, Ensinger C, Theurl I, Dunser M, Ramoni A, Gunsilius E, Eibl G, Mikuz G, Gastl G: Prognostic significance of Ep-CAM AND Her-2/neu overexpression in invasive breast cancer. / Int J Cancer 2002, 98:883-88. CrossRef
    6. Schmidt M, Scheulen ME, Dittrich C, Obrist P, Marschner N, Dirix L, Schmidt M, Ruttinger D, Schuler M, Reinhardt C, / et al.: An open-label, randomized phase II study of adecatumumab, a fully human anti-EpCAM antibody, as monotherapy in patients with metastatic breast cancer. / Ann Oncol 2009.
    7. Shen J, Zhu Z: Catumaxomab, a rat/murine hybrid trifunctional bispecific monoclonal antibody for the treatment of cancer. / Curr Opin Mol Ther 2008, 10:273-84.
    8. Balzar M, Prins FA, Bakker HA, Fleuren GJ, Warnaar SO, Litvinov SV: The structural analysis of adhesions mediated by Ep-CAM. / Exp Cell Res 1999, 246:108-21. CrossRef
    9. Litvinov SV, Balzar M, Winter MJ, Bakker HA, Briaire-de Bruijn IH, Prins F, Fleuren GJ, Warnaar SO: Epithelial cell adhesion molecule (Ep-CAM) modulates cell-cell interactions mediated by classic cadherins. / J Cell Biol 1997, 139:1337-348. CrossRef
    10. Munz M, Kieu C, Mack B, Schmitt B, Zeidler R, Gires O: The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. / Oncogene 2004, 23:5748-758. CrossRef
    11. Munz M, Zeidler R, Gires O: The tumour-associated antigen EpCAM upregulates the fatty acid binding protein E-FABP. / Cancer Lett 2005, 225:151-57. CrossRef
    12. Baeuerle PA, Gires O: EpCAM (CD326) finding its role in cancer. / Br J Cancer 2007.
    13. Maetzel D, Denzel S, Mack B, Canis M, Went P, Benk M, Kieu C, Papior P, Baeuerle PA, Munz M, / et al.: Nuclear signaling by tumour-associated antigen EpCAM. / Nat Cell Biol 2009.
    14. Spizzo G, Gastl G, Obrist P, Fong D, Haun M, Grunewald K, Parson W, Eichmann C, Millinger S, Fiegl H, / et al.: Methylation status of the Ep-CAM promoter region in human breast cancer cell lines and breast cancer tissue. / Cancer Lett 2007, 246:253-61. CrossRef
    15. Went PT, Lugli A, Meier S, Bundi M, Mirlacher M, Sauter G, Dirnhofer S: Frequent EpCam protein expression in human carcinomas. / Hum Pathol 2004, 35:122-28. CrossRef
    16. Chaudry MA, Sales K, Ruf P, Lindhofer H, Winslet MC: EpCAM an immunotherapeutic target for gastrointestinal malignancy: current experience and future challenges. / Br J Cancer 2007, 96:1013-019. CrossRef
    17. Osta WA, Chen Y, Mikhitarian K, Mitas M, Salem M, Hannun YA, Cole DJ, Gillanders WE: EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. / Cancer Res 2004, 64:5818-824. CrossRef
    18. Trzpis M, McLaughlin PM, de Leij LM, Harmsen MC: Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. / Am J Pathol 2007, 171:386-95. CrossRef
    19. Stulnig TM, Amberger A: Exposing contaminating phenol in nucleic acid preparations. / Biotechniques 1994, 16:402-04.
    20. Bieche I, Olivi M, Champeme MH, Vidaud D, Lidereau R, Vidaud M: Novel approach to quantitative polymerase chain reaction using real- time detection: application to the detection of gene amplification in breast cancer. / Int J Cancer 1998, 78:661-66. CrossRef
    21. Bieche I, Onody P, Laurendeau I, Olivi M, Vidaud D, Lidereau R, Vidaud M: Real-time reverse transcription-PCR assay for future management of ERBB2-based clinical applications. / Clin Chem 1999, 45:1148-156.
    22. Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. / Nucleic Acids Res 2001, 29:e45. CrossRef
    23. Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. / Nucleic Acids Res 2002, 30:e36. CrossRef
    24. Dzidic A, Mohr A, Meyer K, Bauer J, Meyer HH, Pfaffl MW: Effects of mycophenolic acid (MPA) treatment on expression of Fc receptor (FcRn) and polymeric immunoglobulin receptor (pIgR) mRNA in adult sheep tissues. / Croat Med J 2004, 45:130-35.
    25. Prang N, Preithner S, Brischwein K, Goster P, Woppel A, Muller J, Steiger C, Peters M, Baeuerle PA, da Silva AJ: Cellular and complement-dependent cytotoxicity of Ep-CAM-specific monoclonal antibody MT201 against breast cancer cell lines. / Br J Cancer 2005, 92:342-49.
    26. Zhang RD, Fidler IJ, Price JE: Relative malignant potential of human breast carcinoma cell lines established from pleural effusions and a brain metastasis. / Invasion Metastasis 1991, 11:204-15.
    27. Hackett AJ, Smith HS, Springer EL, Owens RB, Nelson-Rees WA, Riggs JL, Gardner MB: Two syngeneic cell lines from human breast tissue: the aneuploid mammary epithelial (Hs578T) and the diploid myoepithelial (Hs578Bst) cell lines. / J Natl Cancer Inst 1977, 58:1795-806.
    28. Thompson EW, Paik S, Brunner N, Sommers CL, Zugmaier G, Clarke R, Shima TB, Torri J, Donahue S, Lippman ME, / et al.: Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. / J Cell Physiol 1992, 150:534-44. CrossRef
    29. Zanna P, Trerotola M, Vacca G, Bonasera V, Palombo B, Guerra E, Rossi C, Lattanzio R, Piantelli M, Alberti S: Trop-1 are conserved growth stimulatory molecules that mark early stages of tumor progression. / Cancer 2007, 110:452-64. CrossRef
    30. Kolligs FT, Nieman MT, Winer I, Hu G, Van Mater D, Feng Y, Smith IM, Wu R, Zhai Y, Cho KR, / et al.: ITF-2, a downstream target of the Wnt/TCF pathway, is activated in human cancers with beta-catenin defects and promotes neoplastic transformation. / Cancer Cell 2002, 1:145-55. CrossRef
    31. Balzar M, Bakker HA, Briaire-de-Bruijn IH, Fleuren GJ, Warnaar SO, Litvinov SV: Cytoplasmic tail regulates the intercellular adhesion function of the epithelial cell adhesion molecule. / Mol Cell Biol 1998, 18:4833-843.
    32. Shulewitz M, Soloviev I, Wu T, Koeppen H, Polakis P, Sakanaka C: Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer. / Oncogene 2006, 25:4361-369. CrossRef
    33. Hoppler S, Kavanagh CL: Wnt signaling: variety at the core. / J Cell Sci 2007, 120:385-93. CrossRef
    34. Uren A, Reichsman F, Anest V, Taylor WG, Muraiso K, Bottaro DP, Cumberledge S, Rubin JS: Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling. / J Biol Chem 2000, 275:4374-382. CrossRef
    35. Ugolini F, Charafe-Jauffret E, Bardou VJ, Geneix J, Adelaide J, Labat-Moleur F, Penault-Llorca F, Longy M, Jacquemier J, Birnbaum D, / et al.: WNT pathway and mammary carcinogenesis: loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. / Oncogene 2001, 20:5810-817. CrossRef
    36. Wong SC, Lo SF, Lee KC, Yam JW, Chan JK, Wendy Hsiao WL: Expression of frizzled-related protein and Wnt-signaling molecules in invasive human breast tumours. / J Pathol 2002, 196:145-53. CrossRef
    37. Shiina H, Igawa M, Breault J, Ribeiro-Filho L, Pookot D, Urakami S, Terashima M, Deguchi M, Yamanaka M, Shirai M, / et al.: The human T-cell factor-4 gene splicing isoforms, Wnt signal pathway, and apoptosis in renal cell carcinoma. / Clin Cancer Res 2003, 9:2121-132.
    38. Hatsell S, Rowlands T, Hiremath M, Cowin P: Beta-catenin and Tcfs in mammary development and cancer. / J Mammary Gland Biol Neoplasia 2003, 8:145-58. CrossRef
    39. Rowlands TM, Pechenkina IV, Hatsell S, Cowin P: Beta-catenin and cyclin D1: connecting development to breast cancer. / Cell Cycle 2004, 3:145-48. CrossRef
    40. Yang SZ, Kohno N, Yokoyama A, Kondo K, Hamada H, Hiwada K: Decreased E-cadherin augments beta-catenin nuclear localization: studies in breast cancer cell lines. / Int J Oncol 2001, 18:541-48.
    41. Tang W, Dodge M, Gundapaneni D, Michnoff C, Roth M, Lum L: A genome-wide RNAi screen for Wnt/beta-catenin pathway components identifies unexpected roles for TCF transcription factors in cancer. / Proc Natl Acad Sci USA 2008, 105:9697-702. CrossRef
    42. van Noort M, Clevers H: TCF transcription factors, mediators of Wnt-signaling in development and cancer. / Dev Biol 2002, 244:1-. CrossRef
    43. Ziegler S, Rohrs S, Tickenbrock L, Moroy T, Klein-Hitpass L, Vetter IR, Muller O: Novel target genes of the Wnt pathway and statistical insights into Wnt target promoter regulation. / FEBS J 2005, 272:1600-615. CrossRef
    44. Parrinello S, Lin CQ, Murata K, Itahana Y, Singh J, Krtolica A, Campisi J, Desprez PY: Id-1, ITF-2, and Id-2 comprise a network of helix-loop-helix proteins that regulate mammary epithelial cell proliferation, differentiation, and apoptosis. / J Biol Chem 2001, 276:39213-9219. CrossRef
    45. Zhai Y, Wu R, Schwartz DR, Darrah D, Reed H, Kolligs FT, Nieman MT, Fearon ER, Cho KR: Role of beta-catenin/T-cell factor-regulated genes in ovarian endometrioid adenocarcinomas. / Am J Pathol 2002, 160:1229-238. CrossRef
    46. Sankpal NV, Willman MW, Fleming TP, Layfield JD, Gillanders WE: Transcriptional repression of epithelial cell adhesion molecule contributes to p53 control of breast cancer invasion. / Cancer Res 2009, 69:753-57. CrossRef
    47. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2407/11/45/prepub
  • 作者单位:Johanna M Gostner (1)
    Dominic Fong (1) (2)
    Oliver A Wrulich (3)
    Florian Lehne (1)
    Marion Zitt (1)
    Martin Hermann (4)
    Sylvia Krobitsch (5)
    Agnieszka Martowicz (1)
    Guenther Gastl (1) (2)
    Gilbert Spizzo (1) (2) (6)

    1. Laboratory for Experimental Oncology, Tyrolean Cancer Research Institute, Innrain 66, 6020, Innsbruck, Austria
    2. Department of Haematology and Oncology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
    3. Division of Medical Biochemistry, Biocenter Innsbruck Fritz, Pregl Strasse 3, 6020, Innsbruck, Austria
    4. KMT-Laboratory, Innrain 66, 6020, Innsbruck, Austria
    5. Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany
    6. Department of Haematology and Oncology, Franz Tappeiner Hospital, Via Rossini 5, 39012, Merano, Italy
  • ISSN:1471-2407
文摘
Background Recently, EpCAM has attracted major interest as a target for antibody- and vaccine-based cancer immunotherapies. In breast cancer, the EpCAM antigen is overexpressed in 30-40% of all cases and this increased expression correlates with poor prognosis. The use of EpCAM-specific monoclonal antibodies is a promising treatment approach in these patients. Methods In order to explore molecular changes following EpCAM overexpression, we investigated changes of the transcriptome upon EpCAM gene expression in commercially available human breast cancer cells lines Hs578T and MDA-MB-231. To assess cell proliferation, a tetrazolium salt based assay was performed. A TCF/LEF Reporter Kit was used to measure the transcriptional activity of the Wnt/β-catenin pathway. To evaluate the accumulation of β-catenin in the nucleus, a subcellular fractionation assay was performed. Results For the first time we could show that expression profiling data of EpCAM transfected cell lines Hs578TEpCAM and MDA-MB-231EpCAM indicate an association of EpCAM overexpression with the downregulation of the Wnt signaling inhibitors SFRP1 and TCF7L2. Confirmation of increased Wnt signaling was provided by a TCF/LEF reporter kit and by the finding of the nuclear accumulation of ?-catenin for MDA-MB-231EpCAM but not Hs578TEpCAM cells. In Hs578T cells, an increase of proliferation and chemosensitivity to Docetaxel was associated with EpCAM overexpression. Conclusions These data show a cell type dependent modification of Wnt signaling components after EpCAM overexpression in breast cancer cell lines, which results in marginal functional changes. Further investigations on the interaction of EpCAM with SFRP1 and TCF7L2 and on additional factors, which may be causal for changes upon EpCAM overexpression, will help to characterize unique molecular properties of EpCAM-positive breast cancer cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700