Targeted high throughput sequencing in clinical cancer Settings: formaldehyde fixed-paraffin embedded (FFPE) tumor tissues, input amount and tumor heterogeneity
详细信息    查看全文
  • 作者:Martin Kerick (1)
    Melanie Isau (1) (2)
    Bernd Timmermann (1)
    Holger Sültmann (3)
    Ralf Herwig (1)
    Sylvia Krobitsch (1)
    Georg Schaefer (4) (5)
    Irmgard Verdorfer (5) (6)
    Georg Bartsch (4)
    Helmut Klocker (4)
    Hans Lehrach (1)
    Michal R Schweiger (1)
  • 刊名:BMC Medical Genomics
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:4
  • 期:1
  • 全文大小:419KB
  • 参考文献:1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. / CA Cancer J Clin 61:69-0.
    2. Bell DW: Our changing view of the genomic landscape of cancer. / J Pathol 2010, 220:231-43.
    3. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, / et al.: Patterns of somatic mutation in human cancer genomes. / Nature 2007, 446:153-58. CrossRef
    4. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, / et al.: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. / Science 2008, 321:1801-806. CrossRef
    5. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, / et al.: An integrated genomic analysis of human glioblastoma multiforme. / Science 2008, 321:1807-812. CrossRef
    6. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, / et al.: The consensus coding sequences of human breast and colorectal cancers. / Science 2006, 314:268-74. CrossRef
    7. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, / et al.: The genomic landscapes of human breast and colorectal cancers. / Science 2007, 318:1108-113. CrossRef
    8. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, / et al.: Integrative genomic profiling of human prostate cancer. / Cancer Cell 2010, 18:11-2. CrossRef
    9. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, Yue P, Haverty PM, Bourgon R, Zheng J, / et al.: Diverse somatic mutation patterns and pathway alterations in human cancers. / Nature 2010, 466:869-73. CrossRef
    10. Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, Wang X, Wu L, Li J, Hu M, Gong Y, / et al.: An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. / Cancer Cell 2010, 17:443-54. CrossRef
    11. Timmermann B, Kerick M, Roehr C, Fischer A, Isau M, Boerno ST, Wunderlich A, Barmeyer C, Seemann P, Koenig J, / et al.: Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. / PLoS One 2010, 5:e15661. CrossRef
    12. Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, Harris CC, McLellan MD, Fulton RS, Fulton LL, / et al.: Genome remodelling in a basal-like breast cancer metastasis and xenograft. / Nature 2010, 464:999-005. CrossRef
    13. Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, Stinson J, Yue P, Zhang Y, Pant KP, Bhatt D, / et al.: The mutation spectrum revealed by paired genome sequences from a lung cancer patient. / Nature 2010, 465:473-77. CrossRef
    14. Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, Dooling D, Dunford-Shore BH, McGrath S, Hickenbotham M, / et al.: DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. / Nature 2008, 456:66-2. CrossRef
    15. Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, Delaney A, Gelmon K, Guliany R, Senz J, / et al.: Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. / Nature 2009, 461:809-13. CrossRef
    16. Schweiger MR, Kerick M, Timmermann B, Isau M: The power of NGS technologies to delineate the genome organization in cancer: from mutations to structural variations and epigenetic alterations. / Cancer Metastasis Rev 2011.
    17. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordonez GR, Bignell GR, / et al.: A comprehensive catalogue of somatic mutations from a human cancer genome. / Nature 2010, 463:191-96. CrossRef
    18. Pleasance ED, Stephens PJ, O'Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, Greenman C, / et al.: A small-cell lung cancer genome with complex signatures of tobacco exposure. / Nature 2010, 463:184-90. CrossRef
    19. Krawitz PM, Schweiger MR, Rodelsperger C, Marcelis C, Kolsch U, Meisel C, Stephani F, Kinoshita T, Murakami Y, Bauer S, / et al.: Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. / Nat Genet 2010, 42:827-29. CrossRef
    20. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE, / et al.: Targeted capture and massively parallel sequencing of 12 human exomes. / Nature 2009, 461:272-76. CrossRef
    21. Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME: Microarray-based genomic selection for high-throughput resequencing. / Nat Methods 2007, 4:907-09. CrossRef
    22. Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D, Song X, Richmond TA, Middle CM, Rodesch MJ, Packard CJ, / et al.: Direct selection of human genomic loci by microarray hybridization. / Nat Methods 2007, 4:903-05. CrossRef
    23. Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, Smith SW, Middle CM, Rodesch MJ, Albert TJ, Hannon GJ, McCombie WR: Genome-wide in situ exon capture for selective resequencing. / Nat Genet 2007, 39:1522-527. CrossRef
    24. Porreca GJ, Zhang K, Li JB, Xie B, Austin D, Vassallo SL, LeProust EM, Peck BJ, Emig CJ, Dahl F, / et al.: Multiplex amplification of large sets of human exons. / Nat Methods 2007, 4:931-36. CrossRef
    25. Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T, Giannoukos G, Fisher S, Russ C, / et al.: Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. / Nat Biotechnol 2009, 27:182-89. CrossRef
    26. Weise A, Timmermann B, Grabherr M, Werber M, Heyn P, Kosyakova N, Liehr T, Neitzel H, Konrat K, Bommer C, / et al.: High-throughput sequencing of microdissected chromosomal regions. / Eur J Hum Genet 2010, 18:457-62. CrossRef
    27. Briggs AW, Good JM, Green RE, Krause J, Maricic T, Stenzel U, Lalueza-Fox C, Rudan P, Brajkovic D, Kucan Z, / et al.: Targeted retrieval and analysis of five Neandertal mtDNA genomes. / Science 2009, 325:318-21. CrossRef
    28. Schweiger MR, Kerick M, Timmermann B, Albrecht MW, Borodina T, Parkhomchuk D, Zatloukal K, Lehrach H: Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis. / PLoS One 2009, 4:e5548. CrossRef
    29. Bartsch G, Horninger W, Klocker H, Pelzer A, Bektic J, Oberaigner W, Schennach H, Schafer G, Frauscher F, Boniol M, / et al.: Tyrol Prostate Cancer Demonstration Project: early detection, treatment, outcome, incidence and mortality. / BJU Int 2008, 101:809-16. CrossRef
    30. Horninger W, Berger AP, Rogatsch H, Gschwendtner A, Steiner H, Niescher M, Klocker H, Bartsch G: Characteristics of prostate cancers detected at low PSA levels. / Prostate 2004, 58:232-37. CrossRef
    31. Wood HM, Belvedere O, Conway C, Daly C, Chalkley R, Bickerdike M, McKinley C, Egan P, Ross L, Hayward B, / et al.: Using next-generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin-fixed paraffin-embedded specimens. / Nucleic Acids Res 2010, 38:e151. CrossRef
    32. Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnirke A: Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. / Genome Biol 2011, 12:R18. CrossRef
    33. Aihara M, Wheeler TM, Ohori M, Scardino PT: Heterogeneity of prostate cancer in radical prostatectomy specimens. / Urology 1994, 43:60-6. discussion 66-7 CrossRef
    34. Yatani R, Kusano I, Shiraishi T, Hayashi T, Stemmermann GN: Latent prostatic carcinoma: pathological and epidemiological aspects. / Jpn J Clin Oncol 1989, 19:319-26.
    35. Sakr WA, Grignon DJ, Crissman JD, Heilbrun LK, Cassin BJ, Pontes JJ, Haas GP: High grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma between the ages of 20-9: an autopsy study of 249 cases. / In Vivo 1994, 8:439-43.
    36. Shiraishi T, Watanabe M, Matsuura H, Kusano I, Yatani R, Stemmermann GN: The frequency of latent prostatic carcinoma in young males: the Japanese experience. / In Vivo 1994, 8:445-47.
    37. Bostwick DG, Shan A, Qian J, Darson M, Maihle NJ, Jenkins RB, Cheng L: Independent origin of multiple foci of prostatic intraepithelial neoplasia: comparison with matched foci of prostate carcinoma. / Cancer 1998, 83:1995-002. CrossRef
    38. Macintosh CA, Stower M, Reid N, Maitland NJ: Precise microdissection of human prostate cancers reveals genotypic heterogeneity. / Cancer Res 1998, 58:23-8.
    39. Mehra R, Han B, Tomlins SA, Wang L, Menon A, Wasco MJ, Shen R, Montie JE, Chinnaiyan AM, Shah RB: Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseases. / Cancer Res 2007, 67:7991-995. CrossRef
    40. Clark J, Attard G, Jhavar S, Flohr P, Reid A, De-Bono J, Eeles R, Scardino P, Cuzick J, Fisher G, / et al.: Complex patterns of ETS gene alteration arise during cancer development in the human prostate. / Oncogene 2008, 27:1993-003. CrossRef
    41. Shah RB, Mehra R, Chinnaiyan AM, Shen R, Ghosh D, Zhou M, Macvicar GR, Varambally S, Harwood J, Bismar TA, / et al.: Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. / Cancer Res 2004, 64:9209-216. CrossRef
    42. Mehra R, Tomlins SA, Yu J, Cao X, Wang L, Menon A, Rubin MA, Pienta KJ, Shah RB, Chinnaiyan AM: Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. / Cancer Res 2008, 68:3584-590. CrossRef
    43. Liu W, Laitinen S, Khan S, Vihinen M, Kowalski J, Yu G, Chen L, Ewing CM, Eisenberger MA, Carducci MA, / et al.: Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. / Nat Med 2009, 15:559-65. CrossRef
    44. Barry M, Perner S, Demichelis F, Rubin MA: TMPRSS2-ERG fusion heterogeneity in multifocal prostate cancer: clinical and biologic implications. / Urology 2007, 70:630-33. CrossRef
    45. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, / et al.: The genomic complexity of primary human prostate cancer. / Nature 470:214-20.
    46. Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, Kendall J, Riggs M, Eberling Y, Troge J, Grubor V, / et al.: Inferring tumor progression from genomic heterogeneity. / Genome Res 2010, 20:68-0. CrossRef
    47. Michael Berger MSLF, Francesca Demichelis, Drier KC, Andrey SivachenkoY, Andrea Sboner, Esgueva DP, Carrie Sougnez, Robert Onofrio, Scott CarterL, Park LH, Lauren Ambrogio, Timothy Fennell, Melissa Parkin, Saksena DV, Alex RamosH, Trevor PughJ, Jane Wilkinson, Fisher WW, Scott Mahan, Kristin Ardlie, Jennifer Baldwin, W. Simons NK, Theresa MacDonaldY, Philip KantoffW, Chin SBG, Mark GersteinB, Todd GolubR, Meyerson AT, Eric LanderS, Gad Getz, Mark A, Rubin LAG: The genomic complexity of primary human prostate cancer. / Nature 2011.
    48. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1755-8794/4/68/prepub
  • 作者单位:Martin Kerick (1)
    Melanie Isau (1) (2)
    Bernd Timmermann (1)
    Holger Sültmann (3)
    Ralf Herwig (1)
    Sylvia Krobitsch (1)
    Georg Schaefer (4) (5)
    Irmgard Verdorfer (5) (6)
    Georg Bartsch (4)
    Helmut Klocker (4)
    Hans Lehrach (1)
    Michal R Schweiger (1)

    1. Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany
    2. Department of Biology, Chemistry and Pharmacy, Free University Berlin, Takustrasse 3, 14195, Berlin, Germany
    3. Unit Cancer Genome Research, DKFZ German Cancer Research Center and National Center for Tumor Diseases, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
    4. Department of Urology, Innsbruck Medical University, Anichstr. 35, A 6020, Innsbruck, Austria
    5. Department of Pathology, Innsbruck Medical University, Muellerstr. 40, A-6020, Innsbruck, Austria
    6. Department for Medical Genetics, Molecular and Clinical Pharmacology, Division of Human Genetics, Innsbruck Medical University, Sch?pfstra?e 4, 6020, Innsbruck, Austria
  • ISSN:1755-8794
文摘
Background Massively parallel sequencing technologies have brought an enormous increase in sequencing throughput. However, these technologies need to be further improved with regard to reproducibility and applicability to clinical samples and settings. Methods Using identification of genetic variations in prostate cancer as an example we address three crucial challenges in the field of targeted re-sequencing: Small nucleotide variation (SNV) detection in samples of formalin-fixed paraffin embedded (FFPE) tissue material, minimal amount of input sample and sampling in view of tissue heterogeneity. Results We show that FFPE tissue material can supplement for fresh frozen tissues for the detection of SNVs and that solution-based enrichment experiments can be accomplished with small amounts of DNA with only minimal effects on enrichment uniformity and data variance. Finally, we address the question whether the heterogeneity of a tumor is reflected by different genetic alterations, e.g. different foci of a tumor display different genomic patterns. We show that the tumor heterogeneity plays an important role for the detection of copy number variations. Conclusions The application of high throughput sequencing technologies in cancer genomics opens up a new dimension for the identification of disease mechanisms. In particular the ability to use small amounts of FFPE samples available from surgical tumor resections and histopathological examinations facilitates the collection of precious tissue materials. However, care needs to be taken in regard to the locations of the biopsies, which can have an influence on the prediction of copy number variations. Bearing these technological challenges in mind will significantly improve many large-scale sequencing studies and will - in the long term - result in a more reliable prediction of individual cancer therapies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700