Pyrolysis of agricultural residues for bio-oil production
详细信息    查看全文
  • 作者:Koray Alper ; Kubilay Tekin ; Selhan Karag?z
  • 关键词:Pyrolysis ; Cornelian cherry stone ; Grape seeds ; Bio ; oil ; Bio ; char
  • 刊名:Clean Technologies and Environmental Policy
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:17
  • 期:1
  • 页码:211-223
  • 全文大小:2,400 KB
  • 参考文献:1. Amen-Chen C, Pakdel H, Roy C (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol 79:277-99. doi:10.1016/S0960-8524(00)00180-2 CrossRef
    2. Angin D (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 128:593-97. doi:10.1016/j.biortech.2012.10.150 CrossRef
    3. Bridgwater AV (2004) Biomass fast pyrolysis. Therm. Sci. 8(2):21-9. doi:10.2298/TSCI0402021B CrossRef
    4. Demiral I, Eryaz?c? A, Sensoz S (2012) Bio-oil production from pyrolysis of corncob ( / Zea mays L.). Biomass Bioenerg 36:43-9. doi:10.1016/j.biombioe.2011.10.045 CrossRef
    5. Fabbri D, Torri C, Spokas KA (2012) Analytical pyrolysis of synthetic chars derived from biomass with potential agronomic application (biochar). Relationships with impacts on microbial carbon dioxide production. J Anal Appl Pyrol 93:77-4. doi:10.1016/j.jaap.2011.09.012 CrossRef
    6. Figueiredo MK-K, Romeiro GA (2009) Low temperature conversion (LTC) of castor seeds—a study of the oil fraction (pyrolysis oil). J Anal Appl Pyrol 86:53-7. doi:10.1016/j.jaap.2009.04.006 CrossRef
    7. Grierson S, Strezov V, Shah P (2011) Properties of oil and char derived from slow pyrolysis of / Tetraselmis chui. Bioresour Technol 102:8232-240. doi:10.1016/j.biortech.2011.06.010 CrossRef
    8. Houshfar E, Wang L, Vaha- Savo N, Brink A, Lovas T (2014) Characterisation of CO/NO/SO2 emission and ash-forming elements from the combustion and pyrolysis process. Clean Technol Environ Policy. doi:10.1007/s10098-014-0762-3
    9. Huang Y, Wei Z, Qiu Z, Yin X, Wu C (2012) Study on structure and pyrolysis behavior of lignin derived from corncob acid hydrolysis residue. J Anal Appl Pyrol 93:153-59. doi:10.1016/j.jaap.2011.10.011 CrossRef
    10. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044-098. doi:10.1021/cr068360d CrossRef
    11. Jin F, Enomoto H (2011) Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/basecatalysed and oxidation reaction. Energy Environ Sci 4:382-97. doi:10.1039/C004268D CrossRef
    12. Jourabchi SA, Gan S, Ng HK (2014) Pyrolysis of / Jatropha curcas pressed cake for bio-oil production in a fixed-bed system. Energy Convers Manage 78:518-26. doi:10.1016/j.enconman.2013.11.005 CrossRef
    13. Kader MA, Islam MR, Parveen M, Haniu H, Takai K (2013) Pyrolysis decomposition of tamarind seed for alternative fuel. Bioresour Technol 149:1-. doi:10.1016/j.biortech.2013.09.032 CrossRef
    14. Lievens C, Yperman J, Cornelissen T, Carleer R (2008) Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: part II: characterisation of the liquid and gaseous fraction as a function of the temperature. Fuel 87:1906-916. doi:10.1016/j.f
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering
    Industrial Chemistry and Chemical Engineering
    Industrial Pollution Prevention
    Environmental Economics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-9558
文摘
The production of biofuel from biomass waste is of great interest to the scientific community regarding the discovery of solutions to global energy demand and global warming. The pyrolysis of biomass to produce bio-oil is an easy, cheap and promising technology. In the current investigation, the pyrolysis of two different biomasses (cornelian cherry stones and grape seeds) was achieved at temperatures ranging from 300 to 700?°C. The effect of pyrolysis temperatures on the yields of each product was significant. The bio-oil yields were maximized at 500?°C for cornelian cherry stones and 700?°C for grape seeds. The compositions of bio-oils for both cornelian cherry stones and grape seeds were similar and contained mainly oxygenated hydrocarbons. The compounds observed in this investigation were composed of phenols, alkyl benzenes, alkanes, alkenes, fatty acids, fatty acid esters and a few nitrogen-containing compounds. Bio-char properties were amended in association with both the pyrolysis temperature and biomass type. Bio-chars from cornelian cherry stones contained higher carbon and lower oxygen levels than those from grape seeds under identical conditions. Increases in pyrolysis temperatures produced bio-chars containing higher carbon levels and heating values for both carnelian cherry stones and grape seeds.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700