Synthesis, characterization, and electrochemical performance of nitrogen-modified Pt–Fe alloy nanoparticles supported on ordered mesoporous carbons
详细信息    查看全文
  • 作者:Feng-Sheng Zheng ; Shou-Heng Liu ; Chung-Wen Kuo
  • 关键词:Pt–M nanoparticles ; Ordered mesoporous carbons ; Methanol resistant ; Oxygen reduction reaction ; X ; ray absorption spectroscopy ; Fuel cells
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:18
  • 期:3
  • 全文大小:1,106 KB
  • 参考文献:Baranton S, Coutanceau C, Roux C, Hahn F, Leger J-M (2005) Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics. J Electroanal Chem 577:223–234. doi:10.​1016/​j.​jelechem.​2004.​11.​034 CrossRef
    Beyhan S, Şahin NE, Pronier S, Léger JM, Kadırgan F (2015) Comparison of oxygen reduction reaction on Pt/C, Pt–Sn/C, Pt–Ni/C, and Pt–Sn–Ni/C catalysts prepared by Bönnemann method: a rotating ring disk electrode study. Electrochim Acta 151:565–573. doi:10.​1016/​j.​electacta.​2014.​11.​053 CrossRef
    Chen P, Wang LK, Wang G, Gao MR, Ge J, Yuan WJ, Shen YH, Xiea AJ, Yu SH (2014) Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ Sci 7:4095–4103. doi:10.​1039/​c4ee02531h CrossRef
    Chiao SP, Tsai DS, Wilkinson DP, Chen YM, Huang YS (2010) Carbon supported Ru1−xFexSey electrocatalysts of pyrite structure for oxygen reduction reaction. Int J Hydrog Energy 35:6508–6517. doi:10.​1016/​j.​ijhydene.​2010.​04.​032 CrossRef
    Di Noto V, Negro E, Polizzi S, Vezzu K, Toniolo L, Cavinato G (2014) Synthesis, studies and fuel cell performance of “core–shell” electrocatalysts for oxygen reduction reaction based on a PtNix carbon nitride “shell” and a pyrolyzed polyketone nanoball “core”. Int J Hydrog Energy 39:2812–2827. doi:10.​1016/​j.​ijhydene.​2013.​08.​054 CrossRef
    Diaz LA, Abuin GC, Corti HR (2012) Methanol sorption and permeability in Nafion and acid-doped PBI and ABPBI membranes. J Membr Sci 411–412:35–44. doi:10.​1016/​j.​memsci.​2012.​04.​013 CrossRef
    Ensafi AA, Jafari-Asl M, Rezaei B (2014) A new strategy for the synthesis of 3-D Pt nanoparticles on reduced graphene oxide through surface functionalization, application for methanol oxidation and oxygen reduction. Electrochim Acta 130:397–405. doi:10.​1016/​j.​electacta.​2014.​03.​057 CrossRef
    Escudero Cid R, Gómez de la Fuente JL, Rojas S, Fierro JLG, Ocón P (2013) Polypyrrole-modified-carbon-supported Ru–Pt nanoparticles as highly methanol-tolerant electrocatalysts for the oxygen-reduction reaction. ChemCatChem 5:3680–3689. doi:10.​1002/​cctc.​201300448 CrossRef
    Gomez de la Fuente JL, Martinez-Huerta MV, Rojas S, Hernandez-Fernandez P, Terreros P, Fierro JLG, Peña MA (2009) Tailoring and structure of PtRu nanoparticles supported on functionalized carbon for DMFC applications: new evidence of the hydrous ruthenium oxide phase. Appl Catal B 88:505–514. doi:10.​1016/​j.​apcatb.​2008.​10.​016 CrossRef
    Hobson LJ, Nakano Y, Ozu H, Hayase S (2002) Targeting improved DMFC performance. J Power Sources 104:79–84. doi:10.​1016/​S0378-7753(01)00875-8 CrossRef
    Huang XJ, Tang YG, Yang LF, Chen P, Wu QS, Pan Z (2015) CMK3/graphene–N–Co—a low-cost and high performance catalytic system. J Mater Chem A 3:2978–2984. doi:10.​1039/​c4ta06184e CrossRef
    Hwang BJ, Sarma LS, Chen JM, Chen CH, Shih SC, Wang GR, Liu DG, Lee JF, Tang MT (2005) Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy. J Am Chem Soc 127:11140–11145. doi:10.​1021/​ja0526618 CrossRef
    Hwang BJ, Sarma LS, Wang GR, Chen CH, Liu DG, Sheu HS, Lee JF (2007) Heat-induced alterations in the surface population of metal sites in bimetallic nanoparticles. Chem Eur J 13:6255–6264. doi:10.​1002/​chem.​200700126 CrossRef
    Jin C, Nagaiah TC, Xia W, Spliethoff B, Wang SS, Bron M, Schuhmann W, Muhler M (2010) Metal-free and electrocatalytically active nitrogen-doped carbon nanotubes synthesized by coating with polyaniline. Nanoscale 2:981–987. doi:10.​1039/​B9NR00405J CrossRef
    Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412:169–172. doi:10.​1038/​35084046 CrossRef
    Kang S, Shen PK (2014) A resin-based methodology to synthesize N-doped graphene-like metal-free catalyst for oxygen reduction. Electrochim Acta 142:182–186. doi:10.​1016/​j.​electacta.​2014.​07.​100 CrossRef
    Kim H, Lee K, Woo SI, Jung Y (2011) On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons. Phys Chem Chem Phys 13:17505–17510. doi:10.​1039/​C1CP21665A CrossRef
    Kong LB, Li H, Zhang J, Luo YC, Kang L (2010) Platinum catalyst on ordered mesoporous carbon with controlled morphology for methanol electrochemical oxidation. Appl Surf Sci 256:6688–6693. doi:10.​1016/​j.​apsusc.​2010.​04.​071 CrossRef
    Lai FJ, Sarma LS, Chou HL, Liu DG, Hsieh CA, Lee JF, Hwang B-J (2009) Architecture of bimetallic PtxCo1−x electrocatalysts for oxygen reduction reaction as investigated by X-ray absorption spectroscopy. J Phys Chem C 113:12674–12681. doi:10.​1021/​jp903105e CrossRef
    Lai FJ, Chou HL, Sarma LS, Wang DY, Lin YC, Lee JF, Hwang BJ, Chen CC (2010) Tunable properties of PtxFe1 − x electrocatalysts and their catalytic activity towards the oxygen reduction reaction. Nanoscale 2:573–581. doi:10.​1039/​B9NR00239A CrossRef
    Liu S-H, Chen S-C (2011) Stepwise synthesis, characterization, and electrochemical properties of ordered mesoporous carbons containing well-dispersed Pt nanoparticles using a functionalized template route. J Solid State Chem 184:2420–2427. doi:10.​1016/​j.​jssc.​2011.​07.​016 CrossRef
    Liu S-H, Wu J-R (2014) Influence of nitrogen and iron precursors on the synthesis of FeNx/carbons electrocatalysts toward oxygen reduction reaction in acid solution. Electrochim Acta 135:147–153. doi:10.​1016/​j.​electacta.​2014.​04.​167 CrossRef
    Liu S-H, Chen S-C, Sie W-H (2011a) Heat-treated platinum nanoparticles embedded in nitrogen-doped ordered mesoporous carbons: synthesis, characterization and their electrocatalytic properties toward methanol-tolerant oxygen reduction. Int J Hydrog Energy 36:15060–15067. doi:10.​1016/​j.​ijhydene.​2011.​08.​083 CrossRef
    Liu S-H, Lin Y-C, Chien Y-C, Hyu H-R (2011b) Adsorption of CO2 from flue gas streams by a highly efficient and stable aminosilica adsorbent. J Air Waste Manag Assoc 61:226–233. doi:10.​3155/​1047-3289.​61.​2.​226 CrossRef
    Liu S-H, Wu M-T, Lai Y-H, Chiang C-C, Yu N, Liu S-B (2011c) Fabrication and electrocatalytic performance of highly stable and active platinum nanoparticles supported on nitrogen-doped ordered mesoporous carbons for oxygen reduction reaction. J Chem Mater 21:12489–12496. doi:10.​1039/​C1JM11488C CrossRef
    Liu S-H, Zheng F-S, Wu J-R (2011d) Preparation of ordered mesoporous carbons containing well-dispersed and highly alloying Pt–Co bimetallic nanoparticles toward methanol-resistant oxygen reduction reaction. Appl Catal B 108–109:81–89. doi:10.​1016/​j.​apcatb.​2011.​08.​011 CrossRef
    Liu S-H, Wu J-R, Pan C-J, Hwang B-J (2014) Synthesis and characterization of carbon incorporated Fe–N/carbons for methanol-tolerant oxygen reduction reaction of polymer electrolyte fuel cells. J Power Sources 250:279–285. doi:10.​1016/​j.​jpowsour.​2013.​11.​011 CrossRef
    Lufrano F, Baglio V, Staiti P, Antonucci V, Arico AS (2013) Performance analysis of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 243:519–534. doi:10.​1016/​j.​jpowsour.​2013.​05.​180 CrossRef
    Luna AMC, Bonesi A, Triaca WE, Di Blasi A, Stassi A, Baglio V, Antonucci V, Arico AS (2010) Investigation of a Pt–Fe/C catalyst for oxygen reduction reaction in direct ethanol fuel cells. J Nanopart Res 12:357–365. doi:10.​1007/​s11051-009-9726-7 CrossRef
    Madhu, Singh RN (2011) Palladium selenides as active methanol tolerant cathode materials for direct methanol fuel cell. Int J Hydrog Energy 36:10006–10012. doi:10.​1016/​j.​ijhydene.​2011.​05.​069 CrossRef
    Malheiro AR, Perez J, Villullas HM (2010a) Dependence on composition of electronic properties and stability of Pt–Fe/C catalysts for oxygen reduction. J Power Sources 195:7255–7258. doi:10.​1016/​j.​jpowsour.​2010.​05.​036 CrossRef
    Malheiro AR, Perez J, Villullas HM (2010b) Surface structure and electronic properties of Pt–Fe/C nanocatalysts and their relation with catalytic activity for oxygen reduction. J Power Sources 195:3111–3118. doi:10.​1016/​j.​jpowsour.​2009.​11.​096 CrossRef
    Masa J, Zhao A, Xia W, Muhler M, Schuhmann W (2014) Metal-free catalysts for oxygen reduction in alkaline electrolytes: influence of the presence of Co, Fe, Mn and Ni inclusions. Electrochim Acta 128:271–278. doi:10.​1016/​j.​electacta.​2013.​11.​026 CrossRef
    Moreira J, del Angel P, Ocampo AL, Sebastián PJ, Montoya JA, Castellanos RH (2004) Synthesis, characterization and application of a Pd/Vulcan and Pd/C catalyst in a PEM fuel cell. Int J Hydrog Energy 29:915–920. doi:10.​1016/​j.​ijhydene.​2003.​06.​003 CrossRef
    Oh JG, Kim H (2008) Synthesis and characterization of PtNx/C as methanol-tolerant oxygen reduction electrocatalysts for a direct methanol fuel cell. J Power Sources 181:74–78. doi:10.​1016/​j.​jpowsour.​2008.​02.​095 CrossRef
    Ostrovsky S, Larsen MJ, Peled A, Lellouche JP (2015) Photochemically modified ATO NPs as conductive support of Pt electrocatalysts for proton exchange membrane fuel cells. J Nanopart Res 17:273. doi:10.​1007/​s11051-015-3075-5 CrossRef
    Ozenler SS, Kadirgan F (2006) The effect of the matrix on the electro-catalytic properties of methanol tolerant oxygen reduction catalysts based on ruthenium-chalcogenides. J Power Sources 154:364–369. doi:10.​1016/​j.​jpowsour.​2005.​10.​031 CrossRef
    Prabhuram J, Wang X, Hui CL, Hsing IM (2003) Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications. J Phys Chem B 107:11057–11064. doi:10.​1021/​jp0357929 CrossRef
    Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541. doi:10.​1107/​S090904950501271​9 CrossRef
    Sarapuu A, Kasikov A, Laaksonen T, Kontturi K, Tammeveski K (2008) Electrochemical reduction of oxygen on thin film Pt electrodes in acid solutions. Electrochim Acta 53:5873–5880. doi:10.​1016/​j.​electacta.​2008.​04.​003 CrossRef
    Sevilla M, Yu L, Fellinger TP, Fuertes AB, Titirici MM (2013) Polypyrrole-derived mesoporous nitrogen-doped carbons with intrinsic catalytic activity in the oxygen reduction reaction. RSC Adv 3:9904–9910. doi:10.​1039/​C3RA41719K CrossRef
    Shao MH, Sasaki K, Adzic RR (2006) Pd–Fe nanoparticles as electrocatalysts for oxygen reduction. J Am Chem Soc 128:3526–3627. doi:10.​1021/​ja060167d CrossRef
    Shi H, Shen YF, He F, Li Y, Liu AR, Liu SQ, Zhang YJ (2014) Recent advances of doped carbon as non-precious catalysts for oxygen reduction reaction. J Mater Chem A2:15704–15716. doi:10.​1039/​C4TA02790F CrossRef
    Soto G (2004) Synthesis of PtNx films by reactive laser ablation. Mater Lett 58:2178–2180. doi:10.​1016/​j.​matlet.​2004.​01.​019 CrossRef
    Su F, Tian Z, Poh CK, Wang Z, Lim SH, Liu Z, Lin J (2010) Pt nanoparticles supported on nitrogen-doped porous carbon nanospheres as an electrocatalyst for fuel cells. Chem Mater 22:832–839. doi:10.​1021/​cm901542w CrossRef
    Tsai YW, Tseng YL, Sarma LS, Liu DG, Lee JF, Hwang BJ (2004) Genesis of Pt clusters in reverse micelles investigated by in situ X-ray absorption spectroscopy. J Phys Chem B 108:8148–8152. doi:10.​1021/​jp0495592 CrossRef
    Wang Y, Zang J, Dong L, Pan H, Yuan Y, Wang Y (2013) Graphitized nanodiamond supporting PtNi alloy as stable anodic and cathodic electrocatalysts for direct methanol fuel cell. Electrochim Acta 113:583–590. doi:10.​1016/​j.​electacta.​2013.​09.​091 CrossRef
    Wang G, Wang WH, Wang LK, Yao WT, Yao PF, Zhu WK, Chen P, Wu QS (2015) A N-, Fe- and Co-tridoped carbon nanotube/nanoporous carbon nanocomposite with synergistically enhanced activity for oxygen reduction in acidic media. J Mater Chem A 3:17866–17873. doi:10.​1039/​c5ta03523f CrossRef
    Wu G, Dai C, Wang D, Li D, Li N (2010) Nitrogen-doped magnetic onion-like carbon as support for Pt particles in a hybrid cathode catalyst for fuel cells. J Mater Chem 20:3059–3068. doi:10.​1039/​B924010A CrossRef
    Wu ZY, Chen P, Wu QS, Yang LF, Pan Z, Wang Q (2014) Co/Co3O4/C–N, a novel nanostructure and excellent catalytic system for the oxygen reduction reaction. Nano Energy 8:118–125. doi:10.​1016/​j.​nanoen.​2014.​05.​019 CrossRef
    Xiong L, Manthiram A (2005) Nanostructured Pt–M/C (M = Fe and Co) catalysts prepared by a microemulsion method for oxygen reduction in proton exchange membrane fuel cells. Electrochim Acta 50:2323–2329. doi:10.​1016/​j.​electacta.​2004.​10.​046 CrossRef
    Xu D, Tian Y, Zhao JX, Wang XZ (2015) High stability and reactivity of defective graphene supported FenPt13−n (n = 1, 2, and 3) nanoparticles for oxygen reduction reaction: a theoretical study. J Nanopart Res 17:25. doi:10.​1007/​s11051-014-2834-z CrossRef
    Yang H, Coutanceau C, Leger JM, Alonso-Vante N, Lamy C (2005) Methanol tolerant oxygen reduction on carbon-supported Pt–Ni alloy nanoparticles. J Electroanal Chem 576:305–313. doi:10.​1016/​j.​jelechem.​2004.​10.​026 CrossRef
    Yuan W, Scott K, Cheng H (2006) Fabrication and evaluation of Pt–Fe alloys as methanol tolerant cathode materials for direct methanol fuel cells. J Power Sources 163:323–329. doi:10.​1016/​j.​jpowsour.​2006.​09.​005 CrossRef
    Yuan WJ, Li JC, Chen P, Shen YH, Xie AJ (2014) A one-pot hydrothermal synthesis of 3D nitrogen-doped graphene aerogels-supported NiS2 nanoparticles as efficient electrocatalysts for the oxygen-reduction reaction. J Nanopart Res 16:2311. doi:10.​1007/​s11051-014-2311-8 CrossRef
    Zabinsky SI, Rehr JJ, Ankudinov A, Albers RC, Eller MJ (1995) Multiple-scattering calculations of X-ray-absorption spectra. J Phys Rev B 52:2995–3009. doi:10.​1103/​PhysRevB.​52.​2995 CrossRef
    Zhang J, He D, Su H, Chen X, Pan M, Mu SC (2014a) Porous polyaniline-derived FeNxC/C catalysts with high activity and stability towards oxygen reduction reaction using ferric chloride both as an oxidant and iron source. J Mater Chem A 2:1242–1246. doi:10.​1039/​C3TA14065B CrossRef
    Zhang R, Peng Y, Li Z, Li K, Ma J, Liao Y, Zheng L, Zuo X, Xia DG (2014b) Oxygen electroreduction on heat-treated multi-walled carbon nanotubes supported iron polyphthalocyanine in acid media. Electrochim Acta 147:343–351. doi:10.​1016/​j.​electacta.​2014.​09.​064 CrossRef
    Zheng F-S, Liu S-H, Kuo C-W (2016) Ultralow Pt amount of Pt-Fe alloys supported on ordered mesoporous carbons with excellent methanol tolerance during oxygen reduction reaction. Int J Hydrogen Energy 41:2487–2497. doi:10.​1016/​j.​ijhydene.​2015.​12.​018 CrossRef
  • 作者单位:Feng-Sheng Zheng (1)
    Shou-Heng Liu (2)
    Chung-Wen Kuo (1)

    1. Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, Kao-hsiung, 80778, Taiwan
    2. Department of Environmental Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nanotechnology
    Inorganic Chemistry
    Characterization and Evaluation Materials
    Physical Chemistry
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer Netherlands
  • ISSN:1572-896X
文摘
A method has been demonstrated to synthesize nitrogen-modified Pt–Fe alloyed nanoparticles (9.2–11.3 nm) supported on ordered mesoporous carbon (Pt x Fe100−x N/OMC), which is fabricated by a conventional wet chemical synthesis of Pt–Fe alloyed nanoparticles and followed by carbonization of the nanoparticles with tetraethylenepentamine as nitrogen chelating agent. Among these electrocatalysts, the Pt30Fe70N/OMC has highly catalytic activity for the oxygen reduction reaction (ORR) with significantly enhanced methanol tolerance as well. Combining the results from X-ray diffraction and X-ray absorption spectroscopy, it can be observed that Pt metal in the Pt30Fe70N/OMC is present in the outer shell of Pt–Fe alloys with face-centered cubic crystalline structure. By X-ray photoelectron spectroscopy, the nitrogen-modified Pt surface of Pt30Fe70N/OMC exhibits significant selectivity toward the ORR in the presence of methanol. This enhancement of methanol tolerance could be attributed to the inhibition of methanol adsorption resulting from the modification of the Pt surface with nitrogen.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700