Free and Projective Bimodal Symmetric Gödel Algebras
详细信息    查看全文
  • 作者:Revaz Grigolia ; Tatiana Kiseliova ; Vladimer Odisharia
  • 关键词:Gödel logic ; Symmetric intuitionistic logic ; Modal logic ; Projective algebra ; Free algebra ; 03B45 ; 03F45 ; 06D20
  • 刊名:Studia Logica
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:104
  • 期:1
  • 页码:115-143
  • 全文大小:904 KB
  • 参考文献:1.Abashidze, M., On some properties of Magari algebras, in Logical-Semantical Investigations, Metsniereba, Tbilisi, 1981, pp. 111–127.
    2.Bezhanishvili G.: Varieties of monadic Heyting algebras, Part II: Duality theory. Studia Logica 62, 21–48 (1999)CrossRef
    3.Bezhanishvili, N., Lattices of Intermediate and Cylindric Modal Logics, PhD Thesis, 2006.
    4.Birkhoff G.: On the structure of abstract algebras. Proceedings of the Cambridge Philosophical Society 31, 433–454 (1935)CrossRef
    5.Boolos G.: The Logic of Provability. Cambridge University Press, Cambridge (1993)
    6.Chagrov A. V., Zakharyaschev M. V.: Modal Logic. Oxford University Press, Oxford (1996)
    7.Di Nola A., Grigolia R.: Projective MV-algebras and their automorphism groups. Journal of Multiple-Valued Logic and Soft Computing 9, 291–317 (2003)
    8.Dummett M.: A propositional calculus with denumerable matrix. Journal of Symbolic Logic 24(2), 97–106 (1959)CrossRef
    9.Engelking, R., General Topology, PWN, Warszawa, 1977.
    10.Esakia, L., The problem of dualism in the intuitionistic logic and Browerian lattices, in V International Congress for Logic Methodology and Philosophy of Sciences, Contributed Papers, Section 1, London, ON, 1975, pp. 7–8.
    11.Esakia, L., Semantical analysis of bimodal (temporal) systems, Logic, Semantics, Methodology, Mecniereba Press, Tbilisi, 1978, pp. 87–99.
    12.Esakia, L., Heyting Algebras I, Duality Theory, Metsniereba Press, Tbilisi, 1985 (in Russian).
    13.Esakia, L., Provability interpretation of Intuitionistic Logic, in Logical Investigations, vol. 5, Nauka, Moscow, 1998, pp. 19–24 (in Russian).
    14.Esakia L.: The modalized Heyting calculus: a conservative modal extension of the intuitionistic logic. Journal of Applied Non-Classical Logics 16(3–4), 349–366 (2006)CrossRef
    15.Esakia L., Grigolia R.: The criterion of Browerian and closure algebras to be finiteliy generated. The Bulletin of the Section of Logic 6(2), 46–52 (1973)
    16.Esakia L., Grigolia R.: Formulas of one propositional variable in the intuitionistic logic with the Solovay modality. Logic and Logical Philosophy 17, 111–127 (2008)CrossRef
    17.Caicedo X., Cignoli R.: An algebraic approach to intuitionistic connectives. Journal of Symbolic Logic 66(4), 1620–1636 (2001)CrossRef
    18.Ghilardi S.: Unification through projectivity. The Journal of Symbolic Computation 7(6), 733–752 (1997)
    19.Grätzer, G., Universal Algebras, 2nd ed., Springer, New York, 1979.
    20.Kuznetsov A.: Muravitsky On superintuitionistic logics as fragments of Proof Logic extensions. Studia Logica 45, 77–99 (1986)CrossRef
    21.Kuznetsov, A. V., The proof-intuitionistic propositional calculus, Doklady Akademii Nauk SSSR 283(1):27–30, 1985 (in Russian), English translation: Soviet Mathematics – Doklady 32(1):27–30, 1985.
    22.Magari R.: Representation and duality theory for diagonalizable algebras (The algebraization of theories which express Theor. IV). Studia Logica 34, 305–313 (1975)CrossRef
    23.Mal’cev, A., Algebraic systems, Die Grundlehren der mathematischen Wissenschaften. Band 192, Springer, Berlin; Akademie-Verlag, Berlin XII, 1973, 317 pp.
    24.Marczewski, E., Independence in algebras of sets and Boolean algebras, Fundamenta Mathematicae 48:135–145, 1959/1960.
    25.McKenzie, R., An algebraic version of categorical equivalence for varieties and moe generalalgebraic categories, in Logic and Algebra (Pontignano, 1994), vol. 180 of Lecture Notes in Pure and Applied Mathematics, Dekker, New York, 1996, pp. 211–243, Die Grundlehren der mathematischen Wissenschaften. Band 192, Springer, Berlin; Akademie-Verlag, Berlin, XII, 317 pp., 1973.
    26.McKinsey J., Tarski A.: On closed elements in Closure algebras. Annals of Mathematics 47, 122–162 (1946)CrossRef
    27.Muravitsky, A. Y., Strong equivalence on intitionistic Kripke models and assertorically equivolumnous logics, Algebra Logika 20(2):165–182, 1981 (in Russian), English translation: Algebra and Logic 20(2), 31(2):165–182, 1981.
    28.Muravitsky, A. Y., Finite approximability of the calculus I Δ and the non-modelability of some its extensions, Matematicheskie Zametki 29(6):907–916, 1981 (in Russian), English translation: Mathematical Notes 29(5–6):463–468, 1981.
    29.Muravitsky, A. Y., A correspondence between extensions of the Proof-Intuitionistic logic and extensions of the Provability Logic, Doklady Akademii Nauk SSSR 281(4):789–793, 1985 (in Russian), English translation: Soviet Mathematics – Doklady 31(2):345–348, 1985.
    30.Rauszer C.: Semi-Boolean algebras and their applications to intuitionistic logic with dual operations. Fundamenta Mathematicae 83(3), 219–249 (1973)
    31.Segerberg K.: Modal logic with linear alternative relations. Theoria 38(3), 301–322 (1970)
    32.Solovay R.: Provability interpretation of modal logics. Israel Journal of Mathematics 25, 287–304 (1976)CrossRef
  • 作者单位:Revaz Grigolia (1)
    Tatiana Kiseliova (1)
    Vladimer Odisharia (1)

    1. Department of Mathematical Logic and Discrete Structures, I. Javakhishvili Tbilisi State University, University str., 13, 0147, Tbilisi, Georgia
  • 刊物类别:Humanities, Social Sciences and Law
  • 刊物主题:Philosophy
    Logic
    Mathematical Logic and Foundations
    Computational Linguistics
  • 出版者:Springer Netherlands
  • ISSN:1572-8730
文摘
Gödel logic (alias Dummett logic) is the extension of intuitionistic logic by the linearity axiom. Symmetric Gödel logic is a logical system, the language of which is an enrichment of the language of Gödel logic with their dual logical connectives. Symmetric Gödel logic is the extension of symmetric intuitionistic logic (L. Esakia, C. Rauszer). The proof-intuitionistic calculus, the language of which is an enrichment of the language of intuitionistic logic by modal operator was investigated by Kuznetsov and Muravitsky. Bimodal symmetric Gödel logic is a logical system, the language of which is an enrichment of the language of Gödel logic with their dual logical connectives and two modal operators. Bimodal symmetric Gödel logic is embedded into an extension of (bimodal) Gödel–Löb logic (provability logic), the language of which contains disjunction, conjunction, negation and two (conjugate) modal operators. The variety of bimodal symmetric Gödel algebras, that represent the algebraic counterparts of bimodal symmetric Gödel logic, is investigated. Description of free algebras and characterization of projective algebras in the variety of bimodal symmetric Gödel algebras is given. All finitely generated projective bimodal symmetric Gödel algebras are infinite, while finitely generated projective symmetric Gödel algebras are finite. Keywords Gödel logic Symmetric intuitionistic logic Modal logic Projective algebra Free algebra

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700