Genetic dissection of the maize kernel development process via conditional QTL mapping for three developing kernel-related traits in an immortalized F2 population
详细信息    查看全文
  • 作者:Zhanhui Zhang ; Xiangyuan Wu ; Chaonan Shi ; Rongna Wang…
  • 关键词:Maize (Zea mays L.) ; Kernel development ; Kernel density ; Kernel weight ; Kernel volume ; QTL mapping
  • 刊名:Molecular Genetics and Genomics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:291
  • 期:1
  • 页码:437-454
  • 全文大小:1,507 KB
  • 参考文献:Alvarez Prado S, Lopez CG, Senior ML, Borras L (2014a) The genetic architecture of maize (Zea mays L.) kernel weight determination. G3 (Bethesda) 4:1611–1621CrossRef
    Alvarez Prado S, Sadras VO, Borras L (2014b) Independent genetic control of maize (Zea mays L.) kernel weight determination and its phenotypic plasticity. J Exp Bot 65:4479–4487PubMed CrossRef
    Bhave MR, Lawrence S, Barton C, Hannah LC (1990) Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell 2:581–588PubMed PubMedCentral CrossRef
    Blewley JD, Black M (1985) Seeds: physiology of development and germination. Plenum Press, New York, pp 41–42CrossRef
    Borrás L, Gambín BL (2010) Trait dissection of maize kernel weight: towards integrating hierarchical scales using a plant growth approach. Field Crops Res 118:1–12CrossRef
    Borrás L, Westgate ME (2006) Predicting maize kernel sink capacity early in development. Field Crops Res 95:223–233CrossRef
    Borrás L, Westgate ME, Otegui ME (2003) Control of kernel weight and kernel water relations by post-flowering source-sink ratio in maize. Ann Bot 91:857–867PubMed PubMedCentral CrossRef
    Borrás L, Slafer GA, Otegui ME (2004) Seed dry weight response to source–sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Res 86:131–146CrossRef
    Borrás L, Zinselmeier C, Senior ML, Westgate ME, Muszynski MG (2009) Characterization of grain-filling patterns in diverse maize germplasm. Crop Sci 49:999–1009CrossRef
    Bruce AB (1910) The Mendelian theory of heredity and the augmentation of vigor. Science 32:627–628PubMed CrossRef
    Cheng WH, Taliercio EW, Chourey PS (1996) The miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell 8:971–983PubMed PubMedCentral CrossRef
    Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145CrossRef
    Duvick DN, Cassman KG (1999) Post-green revolution trends in yield potential of temperate maize in the north-central United States. Crop Sci 39:1622–1630CrossRef
    East EM (1936) Heterosis. Genetics 21:375–397PubMed PubMedCentral
    Ettenhuber C, Spielbauer G, Margl L, Hannah LC, Gierl A, Bacher A, Genschel U, Eisenreich W (2005) Changes in flux pattern of the central carbohydrate metabolism during kernel development in maize. Phytochemistry 66:2632–2642PubMed CrossRef
    Frascaroli E, Cane MA, Landi P, Pea G, Gianfranceschi L, Villa M, Morgante M, Pe ME (2007) Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics 176:625–644PubMed PubMedCentral CrossRef
    Fu J, Cheng Y, Linghu J, Yang X, Kang L, Zhang Z, Zhang J, He C, Du X, Peng Z, Wang B, Zhai L, Dai C, Xu J, Wang W, Li X, Zheng J, Chen L, Luo L, Liu J, Qian X, Yan J, Wang J, Wang G (2013) RNA sequencing reveals the complex regulatory network in the maize kernel. Nat Commun 4:2832PubMed
    Gambin BL, Borrás L, Otegui ME (2006) Source-sink relations and kernel weight differences in maize temperate hybrids. Field Crops Res 95:316–326CrossRef
    Gambin BL, Borrás L, Otegui ME (2008) Kernel weight dependence upon plant growth at different grain-filling stages in maize and sorghum. Aust J Agr Res 59:280–290CrossRef
    Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117PubMed CrossRef
    Guo T, Yang N, Tong H, Pan Q, Yang X, Tang J, Wang J, Li J, Yan J (2014) Genetic basis of grain yield heterosis in an “immortalized F2” maize population. Theor Appl Genet 127:2149–2158PubMed CrossRef
    Gupta PK, Rustgi S, Kumar N (2006) Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome 49:565–571PubMed CrossRef
    Gustin JL, Jackson S, Williams C, Patel A, Armstrong P, Peter GF, Settles AM (2013) Analysis of maize (Zea mays L.) kernel density and volume using microcomputed tomography and single-kernel near-infrared spectroscopy. J Agric Food Chem 61:10872–10880PubMed CrossRef
    Hua J, Xing Y, Xu C, Sun X, Yu S, Zhang Q (2002) Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162:1885–1895PubMed PubMedCentral
    Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q (2003) Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 100:2574–2579PubMed PubMedCentral CrossRef
    Jin X, Fu Z, Ding D, Li W, Liu Z, Tang J (2013) Proteomic identification of genes associated with maize grain-filling rate. PLoS One 8:e59353PubMed PubMedCentral CrossRef
    Jones DF (1917) Dominance of linked factors as a means of accounting for heterosis. Genetics 2:466–479PubMed PubMedCentral
    Jones RJ, Simmons SR (1983) Effect of altered source-sink ratio on growth of maize kernels. Crop Sci 23:129–134CrossRef
    Jones RJ, Schreiber BMN, Roessler JA (1996) Kernel sink capacity in maize: genotypic and maternal regulation. Crop Sci 36:301–306CrossRef
    Khaled AS, Vernoud V, Ingram GC, Perez P, Sarda X, Rogowsky PM (2005) Engrailed-ZmOCL1 fusions cause a transient reduction of kernel size in maize. Plant Mol Biol 58:123–139PubMed CrossRef
    Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194CrossRef
    LeClere S, Schmelz EA, Chourey PS (2008) Cell wall invertase-deficient miniature1 kernels have altered phytohormone levels. Phytochemistry 69:692–699PubMed CrossRef
    Li Q, Li L, Yang X, Warburton ML, Bai G, Dai J, Li J, Yan J (2010a) Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol 10:143PubMed PubMedCentral CrossRef
    Li Q, Yang X, Bai G, Warburton ML, Mahuku G, Gore M, Dai J, Li J, Yan J (2010b) Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet 120:753–763PubMed CrossRef
    Li G, Wang D, Yang R, Logan K, Chen H, Zhang S, Skaggs MI, Lloyd A, Burnett WJ, Laurie JD, Hunter BG, Dannenhoffer JM, Larkins BA, Drews GN, Wang X, Yadegari R (2014) Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proc Natl Acad Sci USA 111:7582–7587PubMed PubMedCentral CrossRef
    Lid SE, Gruis D, Jung R, Lorentzen JA, Ananiev E, Chamberlin M, Niu X, Meeley R, Nichols S, Olsen OA (2002) The defective kernel 1 (dek1) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proc Natl Acad Sci USA 99:5460–5465PubMed PubMedCentral CrossRef
    Liu X, Fu J, Gu D, Liu W, Liu T, Peng Y, Wang J, Wang G (2008) Genome-wide analysis of gene expression profiles during the kernel development of maize (Zea mays L.). Genomics 91:378–387PubMed CrossRef
    Liu ZH, Ji HQ, Cui ZT, Wu X, Duan LJ, Feng XX, Tang JH (2010) QTL detected for grain-filling rate in maize using a RIL population. Mol Breed 27:25–36CrossRef
    Maitz M, Santandrea G, Zhang Z, Lal S, Hannah LC, Salamini F, Thompson RD (2000) rgf1, a mutation reducing grain filling in maize through effects on basal endosperm and pedicel development. Plant J 23:29–42PubMed CrossRef
    Ober ES, Setter TL, Madison JT, Thompson JF, Shapiro PS (1991) Influence of water deficit on maize endosperm development: enzyme activities and RNA transcripts of starch and zein synthesis, abscisic acid, and cell division. Plant Physiol 97:154–164PubMed PubMedCentral CrossRef
    Ohdan T, Francisco PB Jr, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot 56:3229–3244PubMed CrossRef
    Peng B, Li Y, Wang Y, Liu C, Liu Z, Tan W, Zhang Y, Wang D, Shi Y, Sun B, Song Y, Wang T, Li Y (2011) QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor Appl Genet 122:1305–1320PubMed CrossRef
    Phillips AR, Evans MM (2011) Analysis of stunter1, a maize mutant with reduced gametophyte size and maternal effects on seed development. Genetics 187:1085–1097PubMed PubMedCentral CrossRef
    Prioul JL, Jeannette E, Reyss A, Gregory N, Giroux M, Hannah LC, Causse M (1994) Expression of ADP-glucose pyrophosphorylase in maize (Zea mays L.) grain and source leaf during grain filling. Plant Physiol 104:179–187PubMed PubMedCentral CrossRef
    Revilla P, Butron A, Malvar RA, Ordas RA (1999) Relationship among kernel weight, early vigor, and growth in maize. Crop Sci 39:654–658CrossRef
    Sabelli PA, Liu Y, Dante RA, Lizarraga LE, Nguyen HN, Brown SW, Klingler JP, Yu J, LaBrant E, Layton TM, Feldman M, Larkins BA (2013) Control of cell proliferation, endoreduplication, cell size, and cell death by the retinoblastoma-related pathway in maize endosperm. Proc Natl Acad Sci USA 110:E1827–E1836PubMed PubMedCentral CrossRef
    SAS Institute (2009) SAS/STAT 9.2 user’s guide, 2nd edn, chapter 6th and 56th. SAS Institute Inc, Cary
    Schmidt RJ, Burr FA, Aukerman MJ, Burr B (1990) Maize regulatory gene opaque-2 encodes a protein with a “leucine-zipper” motif that binds to zein DNA. Proc Natl Acad Sci USA 87:46–50PubMed PubMedCentral CrossRef
    Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115PubMed CrossRef
    Setter TL, Flannigan BA (2001) Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. J Exp Bot 52:1401–1408PubMed CrossRef
    Shiferaw B, Prasanna BM, Hellin J, Banziger M (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Sec 3:307–327CrossRef
    Takai T, Fukuta Y, Shiraiwa T, Horie T (2005) Time-related mapping of quantitative trait loci controlling grain-filling in rice (Oryza sativa L.). J Exp Bot 56:2107–2118PubMed CrossRef
    Tang J, Yan J, Ma X, Teng W, Wu W, Dai J, Dhillon BS, Melchinger AE, Li J (2010) Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor Appl Genet 120:333–340PubMed CrossRef
    Thevenot C, Simond-Cote E, Reyss A, Manicacci D, Trouverie J, Le Guilloux M, Ginhoux V, Sidicina F, Prioul JL (2005) QTLs for enzyme activities and soluble carbohydrates involved in starch accumulation during grain filling in maize. J Exp Bot 56:945–958PubMed CrossRef
    Wang GL, Kang MS, Moreno O (1999) Genetic analyses of grain-filling rate and duration in maize. Field Crops Res 61:211–222CrossRef
    Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370–1374PubMed CrossRef
    Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH (2009) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118:313–325PubMed CrossRef
    Westgate ME (1994) Water status and development of the maize endosperm and embryo during drought. Crop Sci 34:76–83CrossRef
    Westgate ME, Boyer JS (1986) Water status of the developing grain of maize. Agron J 78:714–719CrossRef
    Wu WR, Li WM, Tang DZ, Lu HR, Worland AJ (1999) Time-related mapping of quantitative trait loci underlying tiller number in rice. Genetics 151:297–303PubMed PubMedCentral
    Wu W, Zhou Y, Li W, Mao D, Chen Q (2002) Mapping of quantitative trait loci based on growth models. Theor Appl Genet 105:1043–1049PubMed CrossRef
    Young TE, Gallie DR (2000) Programmed cell death during endosperm development. Plant Mol Biol 44:283–301PubMed CrossRef
    Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMed PubMedCentral
    Zhang Z, Liu Z, Cui Z, Hu Y, Wang B, Tang J (2013) Genetic analysis of grain filling rate using conditional QTL mapping in maize. PLoS One 8:e56344PubMed PubMedCentral CrossRef
    Zhang Z, Liu Z, Hu Y, Li W, Fu Z, Ding D, Li H, Qiao M, Tang J (2014) QTL analysis of kernel-related traits in maize using an immortalized F2 population. PLoS One 9:e89645PubMed PubMedCentral CrossRef
    Zhu J (1995) Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141:1633–1639PubMed PubMedCentral
  • 作者单位:Zhanhui Zhang (1)
    Xiangyuan Wu (1)
    Chaonan Shi (1)
    Rongna Wang (1)
    Shengfei Li (1)
    Zhaohui Wang (1)
    Zonghua Liu (1)
    Yadong Xue (1)
    Guiliang Tang (1) (2)
    Jihua Tang (1)

    1. State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Department of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
    2. Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biochemistry
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1617-4623
文摘
Kernel development is an important dynamic trait that determines the final grain yield in maize. To dissect the genetic basis of maize kernel development process, a conditional quantitative trait locus (QTL) analysis was conducted using an immortalized F2 (IF2) population comprising 243 single crosses at two locations over 2 years. Volume (KV) and density (KD) of dried developing kernels, together with kernel weight (KW) at different developmental stages, were used to describe dynamic changes during kernel development. Phenotypic analysis revealed that final KW and KD were determined at DAP22 and KV at DAP29. Unconditional QTL mapping for KW, KV and KD uncovered 97 QTLs at different kernel development stages, of which qKW6b, qKW7a, qKW7b, qKW10b, qKW10c, qKV10a, qKV10b and qKV7 were identified under multiple kernel developmental stages and environments. Among the 26 QTLs detected by conditional QTL mapping, conqKW7a, conqKV7a, conqKV10a, conqKD2, conqKD7 and conqKD8a were conserved between the two mapping methodologies. Furthermore, most of these QTLs were consistent with QTLs and genes for kernel development/grain filling reported in previous studies. These QTLs probably contain major genes associated with the kernel development process, and can be used to improve grain yield and quality through marker-assisted selection. Keywords Maize (Zea mays L.) Kernel development Kernel density Kernel weight Kernel volume QTL mapping

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700