A new sediment type of coated grain: Oolitic sinter
详细信息    查看全文
  • 作者:ChiHua Wu ; HaiSheng Yi ; Bo Hui ; GuoQing Xia ; Xue Ma
  • 关键词:Qiangtang Basin ; Wenquan graben ; oolitic sinter ; coated grain ; oncoid
  • 刊名:Science China Earth Sciences
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:57
  • 期:9
  • 页码:2013-2024
  • 全文大小:8,864 KB
  • 参考文献:1. Pentecost A, Coletta P. 2007. The role of photosynthesis and CO2 evasion in travertine formation: A quantitative investigation at an important travertine-depositing hot spring, Le Zitelle, Lazio, Italy. J Geol Soc, 164: 843-53 CrossRef
    2. Augustithis S S.1989. Atlas of the Sphaeroidal Textures and Structures and Their Genetic Significance. Athens: Theophrastus Publications S A.1-0
    3. Brehm U, Krumbein W E, Palinska K A. 2003. Microbial spheres: a novel cyanobacterial-diatom symbiosis. Naturwiss, 90: 136-40
    4. Brehm U, Krumbein W E, Palinska K A. 2006. Biomicrospheres generate ooids in laboratory. Geomicrobiol J, 23: 545-50 CrossRef
    5. Braithwhite C J R. 1979. Crystal textures of recent fluvial pisolites and laminated crusts in Dyfed, South Wales. J Sed Petrol, 49:181-94
    6. Bargar K E.1978. Geology and thermal history of Mammoth Hot Springs, Yellowstone National Park, Wyoming. US Geol Surv Bull 1444: 51-5
    7. Bruce W, Fouke. 2011. Hot-spring systems geobiology: Abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA. Sedimentology, 58:170-19 CrossRef
    8. Chafetz H S, Guidry S A. 2003. Deposition and diagenesis of Mammoth hot springs travertine, Yellowstone National Park, Wyoming, USA. Can J Earth Sci, 40: 1515-529 CrossRef
    9. Charlotte S, Denys B S, Edward S. 1981. Spring peas from New York State; nucleation and growth of fresh water hollow ooliths and pisoliths. J Sed Res, 51:1341-346
    10. Davies P J, Martin K. 1976. Radial aragonite ooids, Lizard Island, Great Barrier Reef, Queensland, Australia. Geology, 4: 251-56
    11. Davidson S C, Mckinstry H R. 1931. Cave pearls, oolites, and isolated inclusions in veins. Econ Geol, 26: 289-94 CrossRef
    12. Douglas Benn. 1994. Fabric shape and the interpretation of sedimentary fabric data. J Sed Res, 64: 910-15
    13. Donahue J. 1965. Laboratory growth of pisolite grains. J Sed Petrol, 35: 251-56 CrossRef
    14. Duguid S M A, Kyser T K, James N P, et al. 1980. Microbes and ooids. J Sed Res, 80: 236-51 CrossRef
    15. Eardley A J. 1938. Sediments of the Great Sale Lake, Utah. Am Assoc Petrol Geol Bull, 22: 1305-411
    16. Erik Flugel. 2004. Microfacies of Carbonate Rocks. New York: Springer. 276-279
    17. Fabricius F H. 1977. Origin of marine ooids and grupestones Stuttgart. E Sch Verlag (Nageleu. Obermiller). 1-13
    18. Ferguson J, Bubela B, Davies P J. 1978. Synthesos and possible mechanism of formation of radial carbonate ooids. Chem Geol, 22: 285-08 CrossRef
    19. Gollubic S, Fisher A G. 1975. Ecology of calcareous nodules forming in Little Conestoga Creek near Lancaster, Pennsylvania. Int Verein Limnol, 19: 2315-323
    20. Halley R B. 1977. Ooid fabric and fracture in the Great Salt Lake and the geologic record. J Sed Pertol, 47: 1099-120
    21. Harris P M. 1977. Sedimentology of the Joulters Cay Ooid Sand Shoal, Great Bahama Bank. Doctoral Dissertation. Miami: University Miami. 451
    22. Jones F G, Wilkinson B H. 1978. Structure and growth of lacustrine pisolites from recent Michigan Marl Lakes. J Sed Petrol, 48: 1103-110
    23. Land L S, Behrens E W, Frishman S A. 1979. The ooids of Baffin Bay, Texas. J Sed. Petrol, 49: 1269-278
    24. Li X Z, Guan S R, Xie Q B, et al. 2000. Cause analysis of oncoids in the Guanzhong Formation of Lower Tertiary, Pingyi Basin. Acta Petrol Sin, 16: 261-69
    25. Mcgannon D E. 1975a. Primary fluvial oolites. J Sed Petrol, 45: 719-27
    26. Mcgannon D E. 1975b. Fluvial pisolites. Am Assoc Petrol Geol Abst, 2: 48
    27. Martin H G, Veysey J, Bonheyo G T, et al. 2010. Statistical evaluation of bacterial 16S rRNA gene sequences in relation to travertine mineral precipitation and water chemistry at Mammoth Hot Springs, Yellowstone National Park, USA. In: Barton L, Mendl M, Loy A. eds. Geomicrobiology: Molecular and Environmental Perspective. New York: Springer. 223-45
    28. Newell V P, Purdy E, Imbrie J. 1960. Bahamian oolitic sand. J Geol, 68: 481-97 CrossRef
    29. Pu Q Y, Wu X H, Qian F. 1982. Geological Problem of Quaternary, Tanggula Mountains along Qinghai-Tibet Road. Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau. Beijing: Geological Publishing House. 19-3
    30. Sorby H C. 1879. The structure and origin of limestones. Geol Soc Lond Quart J Proc, 35: 56-5
    31. Simone L. 1980. Ooids: A review. Earth-Sci Rev, 16:319-55 CrossRef
    32. Tucker M E, Wright V P. 1990. Carbonate Sedimentology. Oxford: Blackwell Sciences CrossRef
    33. Wang S L. 1992. Ancient sinter in Qinghai-Tibet Plateau and its significance. Hydrogeol Eng Geol, 19: 29-1
    34. Wang J H. 1998. Continental Sedimentation of Hot Water-Yunnan Area. Beijing: Geological Publishing House. 110-19
    35. Wilkinson B H, Popp B N, Owen R M. 1980. Nearshore oolite formation in a modern temerate region marl lake. J Geol, 88: 697-04 CrossRef
    36. Wu Z H, Wu Z H, Hu D G, et al. 2005. Geomorphologic indicators and rates of late Quaternary normal faulting at the west side of Wenquan graben, central Qinghai-Tibet Plateau. Geol Bull Chin, 24: 48-7
    37. Wu K Y, Shen L C, Wang X G, et al. 2011. Study on hydrochemical features of hot springs in Langjiu geothermal field, Tibet, China. Carsol Sin, 30: 0-
    38. Yang Y F, Zhong J H, Zeng S Q, et al. 2009. Characters of oncolites in the Qingshankou Formation of early Cretaceous, Songliao Basin and its environmental significance. Acta Geol Sin, 83: 558-69
    39. Ye D N. 1981. Operating Methods in Rock and Mineral Laboratory. Beijing: Geological Publishing House. 124-30
    40. Zhang D, Shi C X. 2002. CO2 Partial Pressure, Karst Dissolution Rate and Karst Micro-landforms on the Qinghai-Tibet Plateau. Acta Geol Sin, 76: 566-70
  • 作者单位:ChiHua Wu (1) (2)
    HaiSheng Yi (1) (3)
    Bo Hui (4)
    GuoQing Xia (1)
    Xue Ma (5)

    1. Instotute of Sedimentary Geology of Chengdu University of Technology, Chengdu, 610059, China
    2. College of Earth Sciences of Chengdu University of Technology, Chengdu, 610059, China
    3. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu, 610059, China
    4. Institute of Multipurpose Utilization of Mineral Resources of Chinese Academy of Geological Sciences, Chengdu, 610041, China
    5. Nanjing Institute of Geology and Mineral Resources, Nanjing, 210016, China
  • ISSN:1869-1897
文摘
As a special sedimentary grain type, the coated grain (with an ooid model) has been known for two centuries due to its fascinating special fabric and genesis developments. The leading factors in forming the coated grain consist mainly of: (1) microorganism movement field; (2) chemical sedimentary effect; (3) hydrodynamic force environment and topography condition; (4) abundant core material supply; (5) embedding condition; and (6) humic acids condition in water medium. With the development of the coated grain genesis, the single factor theory cannot reasonably explain the exact formation of the surface sediment of coated grain. Here, we find a new way to study the coated grain on the basis of traditional research methods. The Wenquan area on the northeast edge of the Qiangtang Basin is one of the few areas where the coated grain is developing, and is a rare “natural laboratory-for the study of the coated grain and the thermal spring sediment. The oolitic sinter of the area has the triaxiality modality of pea polymer, and is obviously different from the karst travertine and the normal lacustrine ooid. We found that the hot spring water in the Wenquan area has higher partial pressure of CO2 \(\left( {P_{CO_2 } } \right)\) and saturation index of the calcite (SIc) than normal. Macrocosmically, the oolitic sinter is shaped like a pea, and its grains and gap fillings are light yellow. Microcosmically, the sinter grain forms six types of fundamental lamina, and those six types are developed to be four grain types with different combinations. The C-axis of the mineral grain of sinter cement (calcite) is normal to the lamina face, and grows on it with distinct generation formations. In short, the grain type of oolitic sinter is the oncoid, with the grain development caused by the factors such as the shallow water of strong hydrodynamic force, the special hydrochemistry condition, and the extensive algae activities (diatom).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700