Spatial control of palladium nanoparticles in flexible click-based porous organic polymers for hydrogenation of olefins and nitrobenzene
详细信息    查看全文
  • 作者:Liuyi Li (1) (2)
    Chunshan Zhou (1) (2)
    Huaixia Zhao (1) (2)
    Ruihu Wang (1) (2)

    1. State Key Laboratory of Structural Chemistry
    ; Fujian Institute of Research on the Structure of Matter ; Chinese Academy of Sciences ; Fuzhou ; 350002 ; China
    2. Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
    ; Chinese Academy of Sciences ; Fuzhou ; 350002 ; China
  • 关键词:porous organic polymers ; click reaction ; heterogeneous catalysis ; palladium ; nanoparticles
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:8
  • 期:3
  • 页码:709-721
  • 全文大小:4,073 KB
  • 参考文献:1. Ding, S Y, Wang, W (2013) Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 42: pp. 548-568 CrossRef
    2. Xiang, Z H, Cao, D P (2013) Porous covalent-organic materials: Synthesis, clean energy application and design. J. Mater. Chem. A 1: pp. 2691-2718 CrossRef
    3. Dawson, R, Cooper, A I, Adams, D J (2012) Nanoporous organic polymer networks. Prog. Polym. Sci. 37: pp. 530-563 CrossRef
    4. Li, Y, Fu, Z Y, Su, B L (2012) Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 22: pp. 4634-4667 CrossRef
    5. Yuan, Y, Sun, F X, Zhang, F, Ren, H, Guo, M Y, Cai, K, Jing, X F, Gao, X, Zhu, G S (2013) Targeted synthesis of porous aromatic frameworks and their composites for versatile, facile, efficacious, and durable antibacterial polymer coatings. Adv. Mater. 25: pp. 6619-6624 CrossRef
    6. Patel, H A, Karadas, F, Byun, J, Park, J, Deniz, E, Canlier, A, Jung, Y, Atilhan, M, Yavuz, C T (2013) Highly stable nanoporous sulfur-bridged covalent organic polymers for carbon dioxide removal. Adv. Funct. Mater. 23: pp. 2270-2276 CrossRef
    7. Zhang, P, Weng, Z H, Guo, J, Wang, C C (2011) Solution-dispersible, colloidal, conjugated porous polymer networks with entrapped palladium nanocrystals for heterogeneous catalysis of the Suzuki-Miyaura coupling reaction. Chem. Mater. 23: pp. 5243-5249 CrossRef
    8. Xie, Z G, Wang, C, deKrafft, K E, Lin, W B (2011) Highly stable and porous cross-linked polymers for efficient photocatalysis. J. Am. Chem. Soc. 133: pp. 2056-2059 CrossRef
    9. Chen, L, Yang, Y, Jiang, D L (2010) CMPs as scaffolds for constructing porous catalytic frameworks: A built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J. Am. Chem. Soc. 132: pp. 9138-9143 CrossRef
    10. Ma, H P, Ren, H, Meng, S, Sun, F X, Zhu, G S (2013) Novel porphyrinic porous organic frameworks for high performance separation of small hydrocarbons. Sci. Rep. 3: pp. 2611
    11. Zou, X Q, Ren, H, Zhu, G S (2013) Topology-directed design of porous organic frameworks and their advanced applications. Chem. Commun. 49: pp. 3925-3936 CrossRef
    12. Kaur, P, Hupp, J T, Nguyen, S T (2011) Porous organic polymers in catalysis: Opportunities and challenges. ACS Catal. 1: pp. 819-835 CrossRef
    13. Ma, H P, Ren, H, Zou, X Q, Meng, S, Sun, F X, Zhu, G S (2014) Post-metalation of porous aromatic frameworks for highly efficient carbon capture from CO2 + N2 and CH4 + N2 mixtures. Polym. Chem. 5: pp. 144-152 CrossRef
    14. Bleschke, C, Schmidt, J, Kundu, D S, Blechert, S, Thomas, A (2011) A chiral microporous polymer network as asymmetric heterogeneous organocatalyst. Adv. Synth. Catal. 353: pp. 3101-3106 CrossRef
    15. Verde-Sesto, E, Pintado-Sierra, M, Corma, A, Maya, E M, Campa, J G, Iglesias, M, S谩nchez, F (2014) First prefunctionalised polymeric aromatic framework from mononitrotetrakis(iodophenyl)methane and its applications. Chem. Eur. J. 20: pp. 5111-5120 CrossRef
    16. Saha, B, Gupta, D, Abu-Omar, M M, Modak, A, Bhaumik, A (2013) Porphyrin-based porous organic polymer-supported iron(III) catalyst for efficient aerobic oxidation of 5-hydroxymethyl-furfural into 2,5-furandicarboxylic acid. J. Catal. 299: pp. 316-320 CrossRef
    17. Zhang, Y G, Riduan, S N (2012) Functional porous organic polymers for heterogeneous catalysis. Chem. Soc. Rev. 41: pp. 2083-2094 CrossRef
    18. Totten, R K, Weston, M H, Park, J K, Farha, O K, Hupp, J T, Nguyen, S T (2013) Catalytic solvolytic and hydrolytic degradation of toxic methyl paraoxon with La(catecholate)-functionalized porous organic polymers. ACS Catal. 3: pp. 1454-1459 CrossRef
    19. Xie, Y, Wang, T T, Liu, X H, Zou, K, Deng, W Q (2013) Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nat. Commun. 4: pp. 1960 CrossRef
    20. Li, Y Q, Ben, T, Zhang, B Y, Fu, Y, Qiu, S L (2013) Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks. Sci. Rep. 3: pp. 2420
    21. Zhang, Q, Zhang, S B, Li, S H (2012) Novel functional organic network containing quaternary phosphonium and tertiary phosphorus. Macromolecules 45: pp. 2981-2988 CrossRef
    22. Ren, S J, Dawson, R, Laybourn, A, Jiang, J X, Khimyak, Y, Adams, D J, Cooper, A I (2012) Functional conjugated microporous polymers: From 1,3,5-benzene to 1,3,5-triazine. Polym. Chem. 3: pp. 928-934 CrossRef
    23. Zhao, Y C, Zhang, L M, Wang, T, Han, B H (2014) Microporous organic polymers with acetal linkages: Synthesis, characterization, and gas sorption properties. Polym. Chem. 5: pp. 614-621 CrossRef
    24. Ding, S Y, Gao, J, Wang, Q, Zhang, Y, Song, W G, Su, C Y, Wang, W (2011) Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 133: pp. 19816-19822 CrossRef
    25. Jin, S. B.; Sakurai, T.; Kowalczyk, T.; Dalapati, S.; Xu, F.; Wei, H.; Chen, X.; Gao, J.; Seki, S.; Irle, S. et al. Two-dimensional tetrathiafulvalene covalent organic frameworks: Towards latticed conductive organic salts. / Chem. Eur. J., in press, DOI: 10.1002/chem.201402844.
    26. Budd, P M (2007) Putting order into polymer networks. Science 316: pp. 210-211 CrossRef
    27. Li, Z L, Liu, J H, Huang, Z W, Yang, Y, Xia, C G, Li, F W (2013) One-pot synthesis of Pd nanoparticle catalysts supported on N-doped carbon and application in the domino carbonylation. ACS Catal. 3: pp. 839-845 CrossRef
    28. Liang, M, Su, R X, Huang, R L, Qi, W, Yu, Y J, Wang, L B, He, Z M (2014) Facile in situ synthesis of silver nanoparticles on procyanidin-grafted eggshell membrane and their catalytic properties. ACS Appl. Mater. Interfaces 6: pp. 4638-4649 CrossRef
    29. Song, F J, Wang, C, Falkowski, J M, Ma, L Q, Lin, W B (2010) Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: Tuning catalytic activity by controlling framework catenation and varying open channel sizes. J. Am. Chem. Soc. 132: pp. 15390-15398 CrossRef
    30. Rao, K V, Mohapatra, S, Maji, T K, George, S J (2012) Guest-responsive reversible swelling and enhanced fluorescence in a super-absorbent, dynamic microporous polymer. Chem. Eur. J. 18: pp. 4505-4509 CrossRef
    31. Suresh, V M, Bonakala, S, Atreya, H S, Balasubramanian, S, Maji, T K (2014) Amide functionalized microporous organic polymer (Am-MOP) for selective CO2 sorption and catalysis. ACS Appl. Mater. Interfaces 6: pp. 4630-4637 CrossRef
    32. Liang, L Y, Astruc, D (2011) The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) 鈥渃lick鈥?reaction and its applications. An overview. Coord. Chem. Rev. 255: pp. 2933-2945 CrossRef
    33. Barner-Kowollik, C, Prez, F E, Espeel, P, Hawker, C J, Junkers, T, Schlaad, H, Camp, W (2011) 鈥淐licking鈥?polymers or just efficient linking: What is the difference?. Angew. Chem., Int. Ed. 50: pp. 60-62 CrossRef
    34. Janreddy, D, Kavala, V, Kuo, C W, Chen, W C, Ramesh, C, Kotipalli, T, Kuo, T S, Chen, M L, He, C H, Yao, C F (2013) Copper(I)-catalyzed aerobic oxidative azide-alkene cycloaddition: An efficient synthesis of substituted 1,2,3-triazoles. Adv. Synth. Catal. 355: pp. 2918-2927 CrossRef
    35. Crowley, J D, Gavey, E L (2010) Use of di-1,4-substituted-1,2,3-triazole 鈥渃lick鈥?ligands to self-assemble dipalladium(II) coordinatively saturated, quadruply stranded helicate cages. Dalton Trans. 39: pp. 4035-4037 CrossRef
    36. Jur铆膷ek, M, Felici, M, Contreras-Carballada, P, Lauko, J, Bou, S R, Kouwer, P H J, Brouwer, A M, Rowan, A E (2011) Triazole-pyridine ligands: A novel approach to chromophoric iridium arrays. J. Mater. Chem. 21: pp. 2104-2111 CrossRef
    37. Fleischel, O, Wu, N, Petitjean, A (2010) Click-triazole: Coordination of 2-(1,2,3-triazol-4-yl)-pyridine to cations of traditional tetrahedral geometry (Cu(I), Ag(I)). Chem. Commun. 46: pp. 8454-8456 CrossRef
    38. Wang, D, Denux, D, Ruiz, J, Astruc, D (2013) The clicked pyridyl-triazole ligand: From homogeneous to robust, recyclable heterogeneous mono- and polymetallic palladium catalysts for efficient Suzuki-Miyaura, Sonogashira, and Heck reactions. Adv. Synth. Catal. 355: pp. 129-142 CrossRef
    39. Deraedt, C, Salmon, L, Ruiz, J, Astruc, D (2013) Efficient click-polymer-stabilized palladium nanoparticle catalysts for Suzuki-Miyaura reactions of bromoarenes and reduction of 4-nitrophenol in aqueous solvents. Adv. Synth. Catal. 355: pp. 2992-3001 CrossRef
    40. Zhao, D, Tan, S W, Yuan, D Q, Lu, W G, Rezenom, Y H, Jiang, H L, Wang, L Q, Zhou, H C (2011) Surface functionalization of porous coordination nanocages via click chemistry and their application in drug delivery. Adv. Mater. 23: pp. 90-93 CrossRef
    41. Lucon, J, Abedin, M J, Uchida, M, Liepold, L, Jolley, C C, Young, M, Douglas, T (2010) A click chemistry based coordination polymer inside small heat shock protein. Chem. Commun. 46: pp. 264-266 CrossRef
    42. El-Sagheer, A H, Brown, T (2012) Click nucleic acid ligation: Applications in biology and nanotechnology. Acc. Chem. Res. 45: pp. 1258-1267 CrossRef
    43. Thirumurugan, P, Matosiuk, D, Jozwiak, K (2013) Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev. 113: pp. 4905-4979 CrossRef
    44. Pandey, P, Farha, O K, Spokoyny, A M, Mirkin, C A, Kanatzidis, M G, Hupp, J T, Nguyen, S T (2011) A 鈥渃lick-based鈥?porous organic polymer from tetrahedral building blocks. J. Mater. Chem. 21: pp. 1700-1703 CrossRef
    45. Holst, J R, St枚ckel, E, Adams, D J, Cooper, A I (2010) High surface area networks from tetrahedral monomers: Metal-catalyzed coupling, thermal polymerization, and 鈥渃lick鈥?chemistry. Macromolecules 43: pp. 8531-8538 CrossRef
    46. Plietzsch, O, Schilling, C I, Grab, T, Grage, S L, Ulrich, A S, Comotti, A, Sozzani, P, Muller, T, Br盲se, S (2011) Click chemistry produces hyper-cross-linked polymers with tetrahedral cores. New J. Chem. 35: pp. 1577-1581 CrossRef
    47. Xie, L H, Suh, M P (2013) High CO2-capture ability of a porous organic polymer bifunctionalized with carboxy and triazole groups. Chem. Eur. J. 19: pp. 11590-11597 CrossRef
    48. Li, L Y, Chen, Z L, Zhong, H, Wang, R H (2014) Urea-based porous organic frameworks: Effective supports for catalysis in neat water. Chem. Eur. J. 20: pp. 3050-3060 CrossRef
    49. Li, L Y, Zhao, H X, Wang, J Y, Wang, R H (2014) Facile fabrication of ultrafine palladium nanoparticles with size- and location-control in click-based porous organic polymers. ACS Nano 8: pp. 5352-5364 CrossRef
    50. Thomas, J R, Liu, X J, Hergenrother, P J (2005) Size-specific ligands for RNA hairpin loops. J. Am. Chem. Soc. 127: pp. 12434-12435 CrossRef
    51. Leininger, S, Stang, P J, Huang, S P (1998) Synthesis and characterization of organoplatinum dendrimers with 1,3,5-triethynylbenzene building blocks. Organometallics 17: pp. 3981-3987 CrossRef
    52. Yuan, S W, Kirklin, S, Dorney, B, Liu, D J, Yu, L P (2009) Nanoporous polymers containing stereocontorted cores for hydrogen storage. Macromolecules 42: pp. 1554-1559 CrossRef
    53. Ben, T, Shi, K, Cui, Y, Pei, C Y, Zuo, Y, Guo, H, Zhang, D L, Xu, J, Deng, F, Tian, Z Q (2011) Targeted synthesis of an electroactive organic framework. J. Mater. Chem. 21: pp. 18208-18214 CrossRef
    54. Roy, S G, Haldar, U, De, P (2014) Remarkable swelling capability of amino acid based cross-linked polymer networks in organic and aqueous medium. ACS Appl. Mater. Interfaces 6: pp. 4233-4241 CrossRef
    55. Devadoss, A, Chidsey, C E (2007) Azide-modified graphitic surfaces for covalent attachment of alkyne-terminated molecules by 鈥渃lick鈥?chemistry. J. Am. Chem. Soc. 129: pp. 5370-5371 CrossRef
    56. Bebensee, F, Bombis, C, Vadapoo, S R, Cramer, J R, Besenbacher, F, Gothelf, K V, Linderoth, T R (2013) On-surface azide-alkyne cycloaddition on Cu(111): Does it 鈥渃lick鈥?in ultrahigh vacuum?. J. Am. Chem. Soc. 135: pp. 2136-2139 CrossRef
    57. Kang, N, Park, J H, Ko, K C, Chun, J, Kim, E, Shin, H W, Lee, S M, Kim, H J, Ahn, T K, Lee, J Y (2013) Tandem synthesis of photoactive benzodifuran moieties in the formation of microporous organic networks. Angew. Chem. Int. Ed.. pp. 6228-6232
    58. Du, X, Sun, Y L, Tan, B E, Teng, Q F, Yao, X J, Su, C Y, Wang, W (2010) Tr枚ger鈥檚 base-functionalised organic nanoporous polymer for heterogeneous catalysis. Chem. Commun. 46: pp. 970-972 CrossRef
    59. Ben, T, Pei, C Y, Zhang, D L, Xu, J, Deng, F, Jing, X F, Qiu, S L (2011) Gas storage in porous aromatic frameworks (PAFs). Energy Environ. Sci. 4: pp. 3991-3999 CrossRef
    60. Moon, S Y, Jeon, E, Bae, J S, Byeon, M, Park, J W (2014) Polyurea networks via organic sol-gel crosslinking polymerization of tetrafunctional amines and diisocyanates and their selective adsorption and filtration of carbon dioxide. Polym. Chem. 5: pp. 1124-1131 CrossRef
    61. Rose, M, Klein, N, B枚hlmann, W, B枚hringer, B, Fichtner, S, Kaskel, S (2010) New element organic frameworks via Suzuki coupling with high adsorption capacity for hydrophobic molecules. Soft Matter 6: pp. 3918-3923 CrossRef
    62. Weber, J, Schmidt, J, Thomas, A, B枚hlmann, W (2010) Micropore analysis of polymer networks by gas sorption and 129Xe nmr spectroscopy: Toward a better understanding of intrinsic microporosity. Langmuir 26: pp. 15650-15656 CrossRef
    63. Liang, Q, Liu, J, Wei, Y C, Zhao, Z, MacLachlan, M J (2013) Palladium nanoparticles supported on a triptycene-based microporous polymer: Highly active catalysts for CO oxidation. Chem. Commun. 49: pp. 8928-8930 CrossRef
    64. Baerns, M (2004) Basic principles in applied catalysis. Springer, Berlin CrossRef
    65. Ertl, G, Kn枚zinger, H, Schuth, F, Weitkamp, J (1997) Handbook of heterogeneous catalysis. Wiley-VCH, Weinheim CrossRef
    66. Tew, M W, Janousch, M, Huthwelker, T, Bokhoven, J A (2011) The roles of carbide and hydride in oxide-supported palladium nanoparticles for alkyne hydrogenation. J. Catal. 283: pp. 45-54 CrossRef
    67. Hansen, T W, DeLaRiva, A T, Challa, S R, Datye, A K (2013) Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening?. Acc. Chem. Res. 46: pp. 1720-1730 CrossRef
    68. Torre, A, Gim茅nez-Lop茅z, M D C, Fay, M W, Rance, G A, Solomonsz, W A, Chamberlain, T W, Brown, P D, Khlobystov, A N (2012) Assembly, growth, and catalytic activity of gold nanoparticles in hollow carbon nanofibers. ACS Nano 6: pp. 2000-2007 CrossRef
    69. C谩rdenas-Lizana, F, Berguerand, C, Yuranov, I, Kiwi-Minsker, L (2013) Chemoselective hydrogenation of nitroarenes: Boosting nanoparticle efficiency by confinement within highly porous polymeric framework. J. Catal. 301: pp. 103-111 CrossRef
    70. Lamblin, M, Nassar-Hardy, L, Hierso, J C, Fouquet, E, Felpin, F X (2010) Recyclable heterogeneous palladium catalysts in pure water: Sustainable developments in Suzuki, Heck, Sonogashira and Tsuji-Trost reactions. Adv. Synth. Catal. 352: pp. 33-79 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Two flexible click-based porous organic polymers (CPP-F1 and CPP-F2) have been readily synthesized. SEM images show CPP-F1 is a 3D network, while CPP-F2 exhibits a granular morphology. Pd(OAc)2 can be easily incorporated into CPP-F1 and CPP-F2 to form Pd@CPP-F1 and Pd@CPP-F2, respectively. The interactions between the polymers and palladium are confirmed by solid-state 13C NMR, IR and XPS. Palladium nanoparticles (NPs) are formed after hydrogenation of olefins and nitrobenzene. Palladium NPs in CPP-F1 are well dispersed on the external surface of the polymer, while palladium NPs in CPP-F2 are located in the interior pores and on the external surface. In comparison with NPs in CPP-F1, the dual distribution of palladium NPs in CPP-F2 results in higher selectivity in the hydrogenation of 1,3-cyclohexadiene to cyclohexane. The catalytic systems can be recycled several times without obvious loss of catalytic activity or agglomeration of palladium NPs. Hot filtration, mercury drop tests and ICP analyses suggest that the catalytic systems proceed via a heterogeneous pathway.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700