The Tynong pluton, its mafic synplutonic sheets and igneous microgranular enclaves: the nature of the mantle connection in I-type granitic magmas
详细信息    查看全文
  • 作者:J. D. Clemens ; K. Regmi ; I. A. Nicholls…
  • 关键词:Granitic rocks ; Synplutonic sheets ; Microgranular enclaves ; Petrogenesis ; Tynong batholith ; Central Victoria
  • 刊名:Contributions to Mineralogy and Petrology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:171
  • 期:4
  • 全文大小:3,303 KB
  • 参考文献:Abbott RNJ (1978) Peritectic reactions in the system An–Ab–Or–Qz–H2O. Can Mineral 16(2):245–256
    Allchurch S, Graham I, Daczko N (2008) Petrographic and geochemical characterisation of charnockitic and cumulate gabbro xenoliths from Coliban Dam, central Victoria, with implications for the evolution of the Lachlan Orogen. In: New generation advances in geoscience, Australian earth sciences convention. Geological Society of Australia, abstracts no. 89, p 40
    Belousova EA (2005) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian granitoids. J Petrol 47(2):329–353. doi:10.​1093/​petrology/​egi077 CrossRef
    Bierlein FP, Arne DC, Keay SM, McNaughton NJ (2001) Timing relationships between felsic magmatism and mineralisation in the central Victorian gold province, southeast Australia. Aust J Earth Sci 48:883–899CrossRef
    Bremond d’Ars J, Davy P (1991) Gravity instabilities in magma chambers: rheological modelling. Earth Planet Sci Lett 105:319–329CrossRef
    Cawthorn RG, Brown PA (1976) A model for the formation and crystallisation of corundum-normative calc-alkaline magmas through amphibole fractionation. J Geol 84:467–476CrossRef
    Cawthorn RG, O’Hara MJ (1976) Amphibole fractionation in calc-alkaline magma genesis. Am J Sci 276:309–329CrossRef
    Cayley RA, Taylor DH, Maher S, Willman CE (2002) Proterozoic–Early Palaeozoic continental crust beneath central Victoria: the Selwyn Block and its implications for gold mineralisation. In: Phillips GN, Ely KS (eds) Victoria undercover. CSIRO, Benalla, pp 25–38
    Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174
    Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48:489–499CrossRef
    Chappell BW, White AJR, Wyborn D (1987) The importance of residual source material (restite) in granite petrogenesis. J Petrol 28:1111–1138CrossRef
    Chappell BW, Bryant CJ, Wyborn D (2012) Peraluminous I-type granites. Lithos 153:142–153CrossRef
    Clemens JD (1989) The importance of residual source material (restite) in granite petrogenesis: a comment. J Petrol 30:1313–1316CrossRef
    Clemens JD (1990) The granulite–granite connexion. In: Vielzeuf D, Vidal P (eds) Granulites and crustal differentiation. Kluwer, Dordrecht, pp 25–36CrossRef
    Clemens J (2003) S-type granitic magmas—petrogenetic issues, models and evidence. Earth Sci Rev 61(1–2):1–18. doi:10.​1016/​s0012-8252(02)00107-1 CrossRef
    Clemens JD, Benn K (2010) Anatomy, emplacement and evolution of a shallow-level, post-tectonic laccolith: the Mt Disappointment pluton, SE Australia. J Geol Soc 167(5):915–941. doi:10.​1144/​0016-76492009-120 CrossRef
    Clemens JD, Bezuidenhout A (2014) Origins of co-existing diverse magmas in a felsic intrusion: the Lysterfield Granodiorite, Australia. Contrib Mineral Petrol 167(3):197–212. doi:10.​1007/​s00410-014-0991-9
    Clemens JD, Birch WD (2012) Assembly of a zoned volcanic magma chamber from multiple magma batches: the Cerberean Cauldron, Marysville Igneous Complex, Australia. Lithos 155:272–288. doi:10.​1016/​j.​lithos.​2012.​09.​007 CrossRef
    Clemens JD, Phillips GN (2014) Inferring a deep crustal source terrane from a high-level granitic pluton: the Strathbogie batholith, Australia. Contrib Mineral Petrol 168(5):1070. doi:10.​1007/​s00410-014-1070-y CrossRef
    Clemens JD, Stevens G (2012) What controls chemical variation in granitic magmas? Lithos 134–135:317–329. doi:10.​1016/​j.​lithos.​2012.​01.​001 CrossRef
    Clemens JD, Petford N, Mawer CK (1997) Ascent mechanisms of granitic magmas: causes and consequences. In: Holness M (ed) Deformation-enhanced fluid transport in the Earth’s crust and mantle. Chapman & Hall, London, pp 144–171
    Clemens JD, Darbyshire DPF, Flinders J (2009) Sources of post-orogenic calcalkaline magmas: the Arrochar and Garabal Hill–Glen Fyne complexes, Scotland. Lithos 112(3–4):524–542. doi:10.​1016/​j.​lithos.​2009.​03.​026 CrossRef
    Clemens JD, Helps PA, Stevens G (2010) Chemical structure in granitic magmas – a signal from the source? Earth Env Sci Trans R Soc Edinburgh 100(1–2):159–172. doi:10.​1017/​s175569100901605​3
    Clemens JD, Birch WD, Dudley RJ (2011a) S-type ignimbrites with polybaric crystallisation histories: the Tolmie Igneous Complex, Central Victoria, Australia. Contrib Mineral Petrol 162(6):1315–1337. doi:10.​1007/​s00410-011-0652-1 [Clemens JD, Birch WD, Dudley RJ (2011a) Erratum to: S-type ignimbrites with polybaric crystallisation histories: the Tolmie Igneous Complex, Central Victoria, Australia. Contrib Mineral Petrol 162(6):1339. doi:10.​1007/​s00410-011-0666-8 ]
    Clemens JD, Stevens G, Farina F (2011b) The enigmatic sources of I-type granites and the clinopyroxene–ilmenite connexion. Lithos 126:174–181. doi:10.​1016/​j.​lithos.​2011.​07.​004 CrossRef
    Collins WJ (1996) Lachlan Fold Belt granitoids: products of three-component mixing. Trans R Soc Edinb Earth Sci 87:171–179CrossRef
    Collins WJ (1998) Evaluation of petrogenetic models for Lachlan Fold Belt granitoids: implications for crustal architecture and tectonic models. Aust J Earth Sci 45(4):483–500. doi:10.​1080/​0812009980872840​6 CrossRef
    Cramer JJ (1979) Geochemical variation in some differentiated granitic magmas east of Melbourne, Victoria. Ph.D. unpublished thesis, Department of Geology, La Trobe University, Bundoora
    Crawford AJ, Buckland GL, VandenBerg AHM (1988) Cambrian. In: Douglas JG, Ferguson JA (eds) Geology of Victoria, 2nd edn. Geological Society of Australia, Victorian Division, Melbourne, pp 37–62
    Dempster TJ, Jenkin GRT, Rogers G (1994) The origin of rapakivi texture. J Petrol 35(4):963–981. doi:10.​1093/​petrology/​35.​4.​963 CrossRef
    DePaolo DJ, Perry FV, Baldridge WS (1992) Crustal versus mantle sources of granitic magmas: a two-parameter model based on Nd isotopic studies. Trans R Soc Edinb Earth Sci 83:439–446CrossRef
    Douce AEP (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol Soc Lond Spec Publ 168:55–75. doi:10.​1144/​GSL.​SP.​1999.​168.​01.​05 CrossRef
    Eberz GW, Nicholls IA (1988) Microgranitoid enclaves from the Swift Creek Pluton SE-Australia: textural and physical constraints on the nature of magma mingling process in the plutonic environments. Geol Rundsch 77:713–736CrossRef
    Elburg MA (1996) U–Pb ages and morphologies of zircon in microgranitoid enclaves and peraluminous host granite: evidence for magma mingling. Contrib Mineral Petrol 123:177–189CrossRef
    Elburg MA, Nicholls IA (1995) Origin of microgranitoid enclaves in the S-type Wilsons Promontory batholith, Victoria—evidence for magma mingling. Aust J Earth Sci 42:423–435CrossRef
    Finger F, Schiller D (2012) Lead contents of S-type granites and their petrogenetic significance. Contrib Mineral Petrol 164:747–755. doi:10.​1007/​s00410-012-0771-3 CrossRef
    Foster DA, Gray DR, Kwak TAP, Bucher M (1998) Chronology and tectonic framework of turbidite-hosted gold deposits in the western Lachlan Fold Belt, Victoria: 40Ar–39Ar results. Ore Geol Rev 13:229–250CrossRef
    Glazner AF (2007) Thermal limitations on incorporation of wall rock into magma. Geology 35(4):319. doi:10.​1130/​g23134a.​1 CrossRef
    Glazner AF, Coleman DS, Mills RD (2015) The volcanic–plutonic connection. In: Breitkreuz C, Rocchi S (eds) Advances in Volcanology. Springer, Berlin, Heidelberg, pp 1–22
    Gray CM (1984) An isotopic mixing model for the origin of granitic rocks in southeastern Australia. Earth Planet Sci Lett 70:47–60CrossRef
    Gray CM, Kemp AIS (2009) The two-component model for the genesis of granitic rocks in southeastern Australia—nature of the metasedimentary-derived and basaltic end members. Lithos 111:113–124. doi:10.​1016/​j.​lithos.​2009.​04.​010 CrossRef
    Henry DA, Birch WD (1992) Cambrian greenstones on Phillip Island, Victoria. Aust J Earth Sci 39:567–575CrossRef
    Keay S, Collins WJ, McCulloch MT (1997) A three-component Sr–Nd isotopic mixing model for granitoid genesis, Lachlan fold belt, eastern Australia. Geology 25(4):307. doi:10.​1130/​0091-7613(1997)025<0307:​atcsni>2.​3.​co;2 CrossRef
    Keller CB, Schoene B, Barboni M, Samperton KM, Husson JM (2015) Volcanic–plutonic parity and the differentiation of the continental crust. Nature 523:301–307. doi:10.​1038/​nature14584 CrossRef
    Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM, Whitehouse MJ (2007) Magmatic and crustal differentiation history of granitic rocks from Hf–O isotopes in zircon. Science 317:980–983. doi:10.​1126/​science.​1136154 CrossRef
    Maas R, Kamenetsky MB, Sobolev AV, Kamenetsky VS, Sobolev NV (2005) Sr-Nd-Pb isotopic evidence for a mantle origin of alkali chlorides and carbonates in the Udachnaya kimberlite, Siberia. Geology 35:549–552CrossRef
    Morand VJ (1995) The Barrabool Hills metagabbro: a curious piece of Cambrian jigsaw puzzle in Victoria. Geol Soc Aust Abstr 40:111
    Nandedkar RH, Ulmer P, Müntener O (2014) Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib Mineral Petrol. doi:10.​1007/​s00410-014-1015-5
    Nekvasil H (1991) Ascent of felsic magmas and formation of rapakivi. Am Mineral 76:1279–1290
    Pistone M, Blundy JD, Brooker RA (2016) Textural and chemical consequences of interaction between hydrous mafic and felsic magmas: an experimental study. Contrib Mineral Petrol. doi:10.​1007/​s00410-015-1218-4
    Regmi KR (2012) Petrology and geochemistry of the Tynong Province Granitoids, Victoria, Australia. Ph.D. unpublished thesis, School of Geosciences, Monash University, Clayton
    Richards JR, Singleton OP (1981) Palaeozoic Victoria, Australia: igneous rocks, ages and their interpretation. J Geol Soc Aust 28:395–421CrossRef
    Roberts MP, Clemens JD (1993) Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21:825–828CrossRef
    Rossiter AG (1973) The geology, petrology and geochemistry of the granitic rocks of Victoria. M.Sc. unpublished thesis, La Trobe University
    Rossiter AG (2001) Granites of the Victorian section of the Lachlan fold belt: characterisation and origins. Ph.D. unpublished thesis, La Trobe University
    Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2004) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148(6):635–661. doi:10.​1007/​s00410-004-0632-9 CrossRef
    Soesoo A (2000) Fractional crystallization of mantle-derived melts as a mechanism for some I-type granite petrogenesis: an example from the Lachlan Fold Belt, Australia. J Geol Soc 157:135–149CrossRef
    Sparks RSJ, Marshall LA (1986) Thermal and mechanical constraints on mixing between mafic and silicic magmas. J Volcanol Geotherm Res 29:99–124CrossRef
    Thompson AB (1990) Heat, fluids and melting in the granulite facies. In: Vielzeuf D, Vidal P (eds) Granulites and crustal differentiation. Kluwer, Dordrecht, pp 37–58CrossRef
    Ventura G, Delgaudio P, Iezzi G (2006) Enclaves provide new insights on the dynamics of magma mingling: a case study from Salina Island (Southern Tyrrhenian Sea, Italy). Earth Planet Sci Lett 243(1–2):128–140. doi:10.​1016/​j.​epsl.​2006.​01.​004 CrossRef
    Vernon RH (1984) Microgranitoid enclaves in granites—globules of hybrid magma quenched in a plutonic environment. Nature 309:438–439CrossRef
    Vernon RH (1990) Crystallization and hybridism in microgranitoid enclave magmas—microstructural evidence. J Geophys Res Solid Earth Planet 95(B11):17849–17859CrossRef
    Vernon RH (2007) Problems in identifying restite in granites of southeastern Australia, with speculations on sources of magma and enclaves. Can Mineral 45:147–178CrossRef
    Villaros A, Stevens G, Buick IS (2009) Tracking S-type granite from source to emplacement: clues from garnet in the Cape Granite Suite. Lithos 112(3–4):217–235. doi:10.​1016/​j.​lithos.​2009.​02.​011 CrossRef
    Villaros A, Buick IS, Stevens G (2012) Isotopic variations in S-type granites: an inheritance from a heterogeneous source? Contrib Mineral Petrol 163(2):243–257. doi:10.​1007/​s00410-011-0673-9 CrossRef
    Waight TE, Wiebe RA, Krogstad EJ (2007) Isotopic evidence for multiple contributions to felsic magma chambers: Gouldsboro Granite, Coastal Maine. Lithos 93(3–4):234–247. doi:10.​1016/​j.​lithos.​2006.​03.​066 CrossRef
    Wall VJ, Clemens JD, Clarke DB (1987) Models for granitoid evolution and source compositions. J Geol 95:731–750CrossRef
    Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and compositional effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304CrossRef
    Whalen JB, Percival JA, McNicoll VJ, Longstaffe FJ (2002) A mainly crustal origin for tonalitic granitoid rocks, Superior Province, Canada: implications for Late Archean tectonomagmatic processes. J Petrol 43(8):1551–1570CrossRef
    Wiebe RA, Smith D, Sturm M, King EM, Seckler MS (1997) Enclaves in the Cadillac Mountain granite (coastal Maine): samples of hybrid magma from the base of the chamber. J Petrol 38(3):393–423. doi:10.​1093/​petrology/​38.​3.​393 CrossRef
    Willman CE, Korsch RJ, Moore DH, Cayley RA, Lisitsin VA, Rawling TJ, Morand VJ, O’Shea PJ (2010) Crustal-scale fluid pathways and source rocks in the Victorian gold province, Australia: insights from deep seismic reflection profiles. Econ Geol 105(5):895–915CrossRef
    Wyborn LAI, Chappell BW (1979) Geochemical evidence for the existence of a pre-Ordovician sedimentary layer in south-eastern Australia. Bur Min Res Rec 1979(2):104
    Zen E (1986) Aluminium enrichment in silicate melts by fractional crystallization: some mineralogic and petrographic constraints. J Petrol 27:1095–1117CrossRef
  • 作者单位:J. D. Clemens (1)
    K. Regmi (2)
    I. A. Nicholls (3)
    R. Weinberg (3)
    R. Maas (4)

    1. Department of Earth Sciences, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
    2. Department of Geology, University of Namibia, Private Bag 13301, Windhoek, Namibia
    3. School of Earth, Atmosphere and Environment, Monash University, Clayton, VIC, 3800, Australia
    4. School of Earth Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geology
    Mineral Resources
    Mineralogy
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0967
文摘
In the Lachlan Orogen of south-eastern Australia, the high-level, postorogenic, 368-Ma, I-type Tynong pluton contains granitic to granodioritic rocks that crystallised from a variety of mainly crustally derived magmas emplaced in the shallow crust, in an extensional regime. The isotopic characteristics of the main plutonic rocks are relatively unevolved (87Sr/86Sr t  ~ 0.705–0.706 and εNd t  ~ −0.4 to 0.6), suggesting source rocks not long separated from the mantle. We infer that arc mafic to intermediate rocks and associated immature greywackes formed the main crustal source rocks and that these are located in the largely unexposed Neoproterozoic–Cambrian Selwyn Block that forms the basement. As exposed near its southern margin, the pluton also contains minor, pillowed sheet-like intrusions of quartz dioritic rock that show mainly mingling structures with the enclosing granodiorites, as well as some hybrid pods and fairly abundant igneous microgranular enclaves that we infer to have been derived from the quartz dioritic sheets. Despite this evidence of direct mantle input into the Tynong magma system, the main granodioritic series do not appear to have been formed by magma mixing processes. Of any I-type granite in the region, the Tynong pluton has perhaps the most direct connection with mantle magmas. Nevertheless, the main mantle connection here is probably in the mantle-derived protolith for these crustal magmas and in the mantle thermal event that gave rise to melting of the deep crust in the Selwyn Block. This degree of mantle connectedness seems typical for I-type granitic rocks worldwide.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700