Synthesis of Lactose-Derived Nutraceuticals from Dairy Waste Whey—a Review
详细信息    查看全文
  • 作者:Arijit Nath ; Balázs Verasztó ; Somjyoti Basak…
  • 关键词:Whey ; Lactose ; Lactose ; derived nutraceuticals ; Bioreactor ; Catalyst
  • 刊名:Food and Bioprocess Technology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:9
  • 期:1
  • 页码:16-48
  • 全文大小:1,809 KB
  • 参考文献:Abbadi, A., Gotlieb, K. F., Meiberg, J. B. M., & van Bekkum, H. (1997). Selective chemocatalytic oxidation of lactose and/of lactobionic acid towards L-carboxylactulose (2-keto-lactobionic acid). Applied Catalysis A: General, 156, 105–115.CrossRef
    Abbadi, A., & van Bekkum, H. (1995). Effect of pH in the Pt-catalyzed oxidation of D-glucose to d-gluconic acid. Journal of Molecular Catalysis: A- Chemical, 97, 111–118.CrossRef
    Adamczak, M., Charubin, D., & Bednarski, W. (2009). Influence of reaction medium composition on enzymatic synthesis of galactooligosaccharides and lactulose from lactose concentrates prepared from whey permeate. Chemical Papers, 6, 111–116.
    Akiyama, K., Takase, M., Horikoshi, K., & Okonogi, S. (2001). Production of galactooligosaccharides from lactose using a β-glucosidase from Thermus sp. Z-1. Bioscience, Biotechnology and Biochemistry, 65, 438–441.CrossRef
    Aider, M., & de Halleux, D. (2007). Isomerization of lactose and lactulose production: review. Trends in Food Science and Technology, 18, 356–364.
    Albayrak, N., & Yang, S. T. (2002). Immobilization of β-galactosidase on fibrous matrix by polyethyleneimine for production of galactooligosaccharides from lactose. Biotechnology Progress, 18, 240–251.CrossRef
    Alonso, S., Rendueles, M., & Díaz, M. (2011). Efficient lactobionic acid production from whey by Pseudomonas taetrolens under pH-shift conditions. Bioresource Technology, 102, 9730–9736.CrossRef
    Alonso, S., Rendueles, M., & Díaz, M. (2012). Physiological heterogeneity of Pseudomonas taetrolens during lactobionic acid production. Applied Microbiology and Biotechnology, 96, 1465–1477.CrossRef
    Alonso, S., Rendueles, M., & Díaz, M. (2013). Feeding strategies for enhanced lactobionic acid production from whey by Pseudomonas taetrolens. Bioresource Technology, 134, 134–142.
    Als-Nielsen, B., Gluud, L.L.. Gluud, C. (2004). Non-absorbable disaccharides for hepatic encephalopathy: systemic review of randomized trials. British Medical Journal, 328, 1046–1050.CrossRef
    Amrane, A. (2001). Batch cultures of supplemented whey permeate using Lactobacillus helveticus: unstructured model for biomass formation, substrate consumption and lactic acid production. Enzyme and Microbial Technology, 28(9–10), 827–834.CrossRef
    Amrane, A. (2003). Seed culture and its effect on the growth and lactic acid production of Lactobacillus helveticus. The Journal of General and Applied Microbiology, 49(1), 21–27.CrossRef
    Amrane, A. (2005). Analysis of the kinetics of growth and lactic acid production for Lactobacillus helveticus growing on supplemented whey permeate. Journal of Chemical Technology and Biotechnology, 80(3), 345–352.CrossRef
    Amrane, A., & Prigent, Y. (1996). A novel concept of bioreactor: specialized function two-stage continuous reactor, and its application to lactose conversion into lactic acid. Journal of Biotechnology, 45, 195–203.CrossRef
    Anastassiadis, S., Aivasidis, A., & Wandrey, C. (1999). Process for the production of gluconic acid with a strain of Aureobasidium pullulans Arnaud. US patent No., 5(962), 286.
    Anastassiadis, S., Aivasidis, A., & Wandrey, C. (2003). Continuous gluconic acid production by isolated yeast like mould strains of Aureobasidium pullulans. Applied Microbiology and Biotechnology, 61, 110–117.CrossRef
    Anastassiadis, S., Aivasidis, A., Wandrey, C., & Rehm, H. J. (2005). Process optimization of continuous gluconic acid fermentation by isolated yeast-like strains of Aureobasidium pullulans. Biotechnology and Bioengineering, 91, 494–501.CrossRef
    Armarego, W. L., & Chai, C. L. L. (2009). Purification of biochemicals and related products. In W. L. Armarego, & C. L. L. Chai (Eds.), Purification of laboratory chemicals (pp. 577–708). Oxford: Elsevier.CrossRef
    Arroyo, M.H., González, I.C., Jaramillo, J.C.C., Plascencia M.A. (2014). Isolation and selection of Lactobacillus strains for the production of galactose-isomerase. Tagatose Production by Free Enzyme and Immobilized Cell Systems. (http://​www.​asmonlineeducati​on.​com/​php/​asm2014abstracts​/​data/​papers/​O-1809.​htm)
    Avigad, G. (1957). Enzymatic synthesis and characterization of a new trisaccharide, alpha-lactosyl-beta-fructofuranoside. Journal of Biological Chemistry, 229, 121–129.
    Bai, D. M., Li, S. Z., Liu, Z. L., & Cui, Z. F. (2008). Enhanced L-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate. Applied Biochemistry and Biotechnology, 144, 79–85.CrossRef
    Bailey, J. E., & Ollis, D. F. (1986). Biochemical Engineering Fundamental (2nd ed., ). Singapore:McGraw-Hill International Editions.
    Baminger, U., Ludwig, R., Galhaup, C., Leitner, C., Kulbe, K. D., & Haltrich, D. (2001a). Continuous enzymatic regeneration of redox mediators used in biotransformation reactions employing flavoproteins. Journal of Molecular Catalysis B: Enzymatic, 11, 541–550.CrossRef
    Baminger, U., Subramanian, S. S., Renganathan, V., & Haltrich, D. (2001b). Purification and characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsii. Applied Environmental Microbiology, 67, 1766–1774.CrossRef
    Bansal, S., Oberoi, H. S., Dhillon, G. S., & Patil, R. T. (2008). Production of β-galactosidase by Kluyveromyces marxianus MTCC1388 using whey and effect of four different methods of enzyme extraction on β-galactosidase activity. Indian Journal of Microbiology, 48(3), 337–341.CrossRef
    Beadle, J. R., Saunders, J. P., Wajda, J. R., & Thomas, J. (1991). Process for manufacturing tagatose. US Patent Number, 5, 002,612.
    Beadle, J. R., Saunders, J. P., Wajda, J. R., & Thomas, J. (1992). Process for manufacturing tagatose. US Patent Number, 5, 078,796.
    Belkacemi, K., & Hamoudi, S. (2010). Chemocatalytic oxidation of lactose to lactobionic acid over PdeBi/SBA-15: reaction kinetics and modeling. Industrial and Engineering Chemistry Research, 49, 6878–6889.CrossRef
    Belkacemi, K., Vlad, M. C., Hamoudi, S., & Arul, J. (2007). Value-added processing of lactose: preparation of bioactive lactobionic acid using a novel catalytic method. International Journal of Chemical Reactor Engineering, 5, A64.
    Berger, J. L., Lee, B. H., & Lacroix, C. (1995). Oligosaccharide synthesis by free and immobilized β-galactosidase from Thermus aquaticus YT-1. Biotechnology Letters, 17, 1077–1080.CrossRef
    Besson, M., & Gallezot, P. (2003). Deactivation of metal catalysts in liquid phase organic reactions. Catalysis Today, 81, 547–559.CrossRef
    Besson, M., Lahmer, F., Gallezot, P., Fuertes, P., & Fleche, G. (1995). Catalytic oxidation of glucose on bismuth-promoted palladium catalysts. Journal of Catalysis, 152, 116–121.CrossRef
    Bianchi, M. M., Brambilla, L., Protani, F., Liu, C., Lievense, J., & Porro, D. (2001). Efficient homolactic fermentation by Kluyveromyces lactis strains defective in pyruvate utilization and transformed with the heterologous LDH gene. Applied and Environmental Microbiology, 67, 5621–5625.CrossRef
    Bibal, B., Goma, G., Vayssier, Y., & Pareilleux, A. (1988). Influence of pH, lactose and lactic acid on the growth of Streptococcus cremoris: a kinetic study. Applied Microbiology and Biotechnology, 28(4–5), 340–344.CrossRef
    Bicker, M., Endress, S., Ott, L., & Vogel, H. (2005). Catalytical conversion of carbohydrates in subcritical water: a new chemical progress for lactic acid production. Journal of Molecular Catalysis A- Chemical, 239, 151–157.CrossRef
    Biella, S., Prati, L., & Rossi, M. (2002). Selective oxidation of d-glucose on gold catalyst. Journal of Catalysis, 206, 242–247.CrossRef
    Blanch, H. W., & Clark, D. S. (1996). Library of Congress Cataloging-in-Publication (first ed., ). New York:Biochemical Engineering.
    Boon, M. A., Janssen, A. E. M., & Van der Padt, A. (1999). Modelling and parameter estimation of the enzymatic synthesis of oligosaccharides by beta-galactosidase from Bacillus circulans. Biotechnology and Bioengineering, 64(5), 558–567.CrossRef
    Boon, M. A., Janssen, A. E. M., & Vant Riet, K. (2000a). Effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides. Enzyme and Microbial Technology, 26(2–4), 271–281.CrossRef
    Boon, M. A., Vant Riet, K., & Janssen, A. E. M. (2000b). Enzymatic synthesis of oligosaccharides: product removal during a kinetically controlled reaction. Biotechnology and Bioengineering, 70(4), 411–420.CrossRef
    Boonmee, M., Leksawasdi, N., Bridge, W., & Rogers, P. L. (2003). Batch and continuous culture of Lactococcus lactis NZ133: experimental data and model development. Biochemical Engineering Journal, 14(2), 127–135.
    Borges da Silva, E., Pedruzzi, I., & Rodrigues, A. E. (2011). Simulated moving bed technology to improve the yield of the biotechnological production of lactobionic acid and sorbitol. Adsorption e Journal of the International Adsorption Society, 17, 145–158.CrossRef
    Bouasker, H. (2009). Étude expérimentale et optimisation des conditions opératoires de loxydation catalytique du lactose en acide lactobionique. Quebec:Université Laval. MSc. Thesis.
    Boyaval, P., Corre, C., & Terre, S. (1987). Continuous lactic acid fermentation with concentrated product recovery by ultrafiltration and electrodialysis. Biotechnology Letters, 9, 207–212.CrossRef
    Bruins, M.E., Strubel, M., van Lieshout, J.F.T., Janssen, A.E.M., Boom, R..M. (2003). Oligosaccharide synthesis by the hyperthermostable β-glucosidase from Pyrococcus furiosus: kinetics and modelling. Enzyme and Microbial Technology, 33, 3–11.
    Bruno-Barcena, J. M., Ragout, A. L., Cordoba, P. R., & Sineriz, F. (1999). Continuous production of L(+)-lactic acid by Lactobacillus casei in two-stage systems. Applied Microbiology and Biotechnology, 51(3), 316–324.CrossRef
    Bucek, W., Connors, W. M., Cort, W. M., & Roberts, H. R. (1956). Evidence for the formation and utilization of lactobionic acid by Penicillium chrysogenum. Archives of Biochemistry and Biophysics, 63, 477–478.CrossRef
    Budhavaram, N. K., & Fan, Z. (2009). Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulans strains. Bioresouce Technology, 100, 5966–5972.CrossRef
    Budtz, P., Vindelov, J.T, Nielsen, P.M., Ashie, I., Nordkvist, M. (2007). Enzymatic process for obtaining increased yield of lactobionic acid. United States Patent Application Pub. No.: US 20070154595.
    Buemann, B., Toubro, S., Raben, A., Blundell, J., & Astrup, A. (2000). The acute effect of D-tagatose on food intake in human subjects. Brazilian Journal of Nutrition, 84, 227–231.
    Burgos-Rubio, C. N., Okos, M. R., & Wankat, P. C. (2000). Kinetic study of the conversion of different substrates to lactic acid using Lactobacillus bulgaricus. Biotechnology Progress, 16(3), 305–314.CrossRef
    Büyükkileci, A. O., & Harsa, S. (2004). Batch production of L-(+) lactic acid from whey by Lactobacillus casei NRRL B-441. Journal of Chemical Technology and Biotechnology, 79, 1036–1040.CrossRef
    Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active Enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research, 37, 233–238.CrossRef
    Carobbi R, Miletti S, Franci V. (1985) Process for preparing lactulose from lactose, in the form of a syrup or a crystalline product. US Patent 4536221.
    Chakraborty, P., & Dutta, S. K. (1999). Kinetics of lactic acid production by Lactobacillus delbrueckii and Lactobacillus bulgaricus in glucose and whey media. Journal of Food Science and Technology, 36, 210–216.
    Cheetham, P. S. J., & Wootton, A. N. (1993). Bioconversion of D-galactose into D-tagatose. Enzyme and Microbial Technology, 15, 105–108.CrossRef
    Chen, W., Chen, H., Xia, Y., Zhao, J., Tian, F., & Zhang, H. (2008). Production, purification and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus. Journal of Dairy Science, 91(5), 1751–1758.CrossRef
    Cheng, L., Mu, W., & Jiang, B. (2010a). Thermostable L-arabinose isomerase from Bacillus stearothermophilus IAM 11001 for D-tagatose production: gene cloning, purification and characterization. Journal of the Science of Food and Agriculture, 90, 1327–1333.CrossRef
    Cheng, L., Mu, W., Zhang, T., & Jiang, B. (2010b). An L-arabinose isomerase from Acidothermus cellulolytics ATCC 43068: cloning, expression, purification, and characterization. Applied Microbiology and Biotechnology, 86, 1089–1097.CrossRef
    Chia, Y. N., Latusek, M. P., & Holles, J. H. (2008). Catalytic wet oxidation of lactose. Industrial and Engineering Chemistry Research, 47, 4049–4055.CrossRef
    Cho, Y. J., Shin, H. J., & Bucke, C. (2003a). Purification and biochemical properties of a galactooligosaccharide producing β-galactosidase from Bullera singularis. Biotechnology Letters, 25, 2107–2111.CrossRef
    Cho, Y. J., Shin, H. J., & Bucke, C. (2003b). Purification and biochemical properties of a galactooligosaccharide producing b-galactosidase from Bullera singularis. Biotechnology Letters, 25, 2107–2111.CrossRef
    Cho, Y. K., & Bailey, J. E. (1977). Glucoamylase and glucose oxidase preparations and their combined application for the conversion of maltose to gluconic acid. Biotechnology and Bioengineering, 19, 185–198.CrossRef
    Chockchaisawasdee, S., Athanasopoulos, V. I., Niranjan, K., & Rastall, R. A. (2005). Synthesis of galacto-oligosaccharide from lactose using β-galactosidase from Kluyveromyces lactis: studies on batch and continuous UF membrane-fitted bioreactors. Biotechnology and Bioengineering, 89, 434–443.CrossRef
    Choi, H. J., Kim, C. S., Kim, P., Jung, H. C., & Oh, D. K. (2004). Lactosucrose bioconversion from lactose and sucrose by whole cells of Paenibacillus polymyxa harboring levansucrase activity. Biotechnology Progress, 20, 1876–1879.CrossRef
    Chouayekh, H., Bejar, W., Rhimi, M., Jelleli, K., Mseddi, M., & Bejar, S. (2007). Characterization of an L-arabinose isomerase from the Lactobacillus plantarum NC8 strain showing pronounced stability at acidic pH. FEMS Microbiology Letters, 277, 260–267.CrossRef
    Clark, D. S. (1994). Can immobilization be exploited to modify enzyme activity? Trends in Biotechnology, 12, 439–443.CrossRef
    Cort, W. M., Connors, W. M., Roberts, H. R., & Bucek, W. (1956). Evidence for the formation and utilization of lactobionic acid by Penicillium chrysogenum. Archives of Biochemistry and Biophysics, 63, 477–478.CrossRef
    Cruz, R., D'Arcadia Cruz, V., Belote, J. G., de Oliveira Khenayfesa, M., Dorta, C., dos Santos Oliveiraa, L. H., Ardiles, E., & Galli, A. (1999). Production of transgalactosylated oligosaccharides (TOS) by galactosyltransferase activity from Penicillium simplicissimum. Bioresource Technology, 165-171.
    Czermak, P., Ebrahimi, M., Grau, K., Netz, S., Sawatzki, G., & Pfromm, P. H. (2004). Membrane-assisted enzymatic production of galactosyl-oligosaccharides from lactose in a continuous process. Journal of Membrane Science, 232, 85–91.CrossRef
    Davila-Vazquez, G., Cota-Navarro, C. B., Rosales-Colunga, L. M., De León-Rodríguez, A., & Razo-Flores, E. (2009). Continuous biohydrogen production using cheese whey: improving the hydrogen production rate. International Journal of Hydrogen Energy, 34(10), 4296–4304.CrossRef
    de Bruijn, J. M., Kieboom, A. P. G., van Bekkum, H., & van der Poel, P. W. (1986). Reactions of monosaccharides in aqueous alkaline solutions. Sugar Technol. Rev, 13, 21–52.
    De Harr, W. T., & Pluim, H. (1991). Method of preparing lactulose. European patent, 0339749.
    de Wilt, H. G. J. (1972). Oxidation of glucose to gluconic acid. Industrial and Engineering Chemistry Product Results and Development, 11, 370–378.CrossRef
    Dendene, K., Guihard, L., Balannec, B., & Bariou, B. (1995). Study of the separation of lactose, lactulose and galactose by liquid chromatography using cationic ion-exchange resin columns. Chromatographia, 41, 561–567.CrossRef
    Dendene, K., Guihard, L., Nicolas, S., & Bariou, B. (1994). Kinetics of lactose isomerisation to lactulose in alkaline-medium. Journal of Chemical Technology and Biotechnology, 61, 37–42.CrossRef
    Dequin, S., & Barre, P. (1994). Mixed lactic acid-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L-(+)-LDH. Journal of Biotechnology, 12, 173–177.CrossRef
    Deya, E., & Takahashi, K. (1991). Production process of high purity lactulose syrup. US Patent, 5034064.
    Dhariwal, A., Mavrov, V., & Schroeder, I. (2006). Production of lactobionic acid with process integrated electrochemical enzyme regeneration and optimization of process variables using response surface methods (RSM). Journal of Molecular Catalysis B: Enzymatic, 42, 64–69.CrossRef
    Dills, W. L. (1989). Sugar alcohols as bulk sweeteners. Annual Reviews of Nutrition, 9, 161–186.CrossRef
    Dong, X. Y., Bai, S., & Sun, Y. (1996). Production of L(+)-lactic acid with Rhizopus oryzae immobilized in polyurethane foam cubes. Biotechnology Letters, 18, 225–228.CrossRef
    Donner, T. W., Wilber, J. F., & Ostrowski, D. (1999). D-Tagatose, a novel hexose: acute effects of carbohydrate tolerance in subjects with and without type 2 diabetes. Diabetes, Obesity and Metabolism, 1, 285–291.CrossRef
    Doran, P. M. (2012). Bioprocess engineering principles (second ed., ). USA:Academic Press.
    Druliolle, H., Kokoh, K. B., & Beden, B. (1994). Electrooxidation of lactose on platinum and on modified platinum-electrodes in alkaline-medium. Electrochimica Acta, 39, 2577–2584.CrossRef
    Druliolle, H., Kokoh, K. B., & Beden, B. (1995). Selective oxidation of lactose to lactobionic acid on lead-adatoms modified platinum-electrodes in Na2CO3 + NaHCO3 buffered medium. Journal of Electroanalytical Chemistry, 385, 77–83.CrossRef
    Druliolle, H., Kokoh, K. B., Hahn, F., Lamy, C., & Beden, B. (1997). On some mechanistic aspects of the electrochemical oxidation of lactose at platinum and gold electrodes in alkaline medium. Journal of Electroanalytical Chemistry, 426, 103–115.CrossRef
    Eddy, B. P. (1958). Bacterial oxidation of lactose and melibiose. Nature, 181, 904–905.CrossRef
    Efremenko, E., Spiricheva, O., Varfolomeyev, S., & Lozinsky, V. (2006). Rhizopus oryzae fungus cells producing L(+)-lactic acid: kinetic and metabolic parameters of free and PVAcryogel-entrapped mycelium. Applied Microbiology and Biotechnology, 72, 480–485.CrossRef
    El-Samragy, Y. A., Khorshid, M. A., Foda, M. I., & Shehata, A. E. (1996). Effect of fermentation conditions on the production of citric acid from cheese whey by Aspergillus niger. International Journal of Food Microbiology, 29(2–3), 411–416.CrossRef
    Elshafei, A. M., Hassan, M. M., Morsi, N. M., & Elghonamy, D. H. (2011). Purification and some kinetic properties of β-glucosidase from Aspergillus terreus NRRL 265. African Journal of Biotechnology, 10(84), 19556–19569.
    Ergüder, T. H., Tezel, U., Güven, E., & Demirer, G. N. (2001). Anaerobic biotransformation and methane generation potential of cheese whey in batch and UASB reactors. Waste Management, 21(7), 643–650.CrossRef
    Faijes, M., & Planas, A. (2007). In vitro synthesis of artificial polysaccharides by glycosidases and glycosynthases. Carbohydrate Research, 342(12–13), 1581–1594.CrossRef
    Fakhravar, S., Najafpour, G., Heris, S. Z., Izadi, M., & Fakhravar, A. (2012). Fermentative lactic acid from deproteinized whey using Lactobacillus bulgaricus in batch culture. World Applied Sciences Journal, 17, 1083–1086.
    Ferchichi, M., Crabbe, E., Gil, G. H., Hintz, W., & Almadidy, A. (2005). Influence of initial pH on hydrogen production from cheese whey. Journal of Biotechnology, 120(4), 402–409.CrossRef
    Ferrari, M.D.; Bianco, R.; Froche, C., Loperena, M.L. (2001). Baker's yeast production from molasses/cheese whey mixtures. Biotechnology Letters, 23(1), 1–4.
    Filice, M., & Marciello, M. (2013). Enzymatic synthesis of oligosaccharides: a powerful tool for a sweet challenge. Current Organic Chemistry, 17, 701–718.CrossRef
    Fisher, E., & Meyer, J. (1889). Oxydation des milchzuckers. Berichte der Deutschen Chemischen Gesellschaft, 22, 361–364.CrossRef
    Foda, M. I., & López-Leiva, M. H. (2000). Continuous production of oligosaccharides from whey using a membrane reactor. Process Biochemistry, 35, 581–587.CrossRef
    Fowler, T., Rey, M. W., Vaha-Vahe, P., Power, S. D., & Berka, R. M. (1993). The catR gene encoding a catalase from Aspergillus niger. Primary structure and elevated expression through increased copy number and use of a strong promoter. Molecular Microbiology, 5, 989–998.CrossRef
    Freimund, S., Huwig, A., Giffhorn, F., & Köpper, S. (1996). Convenient chemo-enzymatic synthesis of D-tagatose. Journal of Carbohydrate Chemistry, 15(1), 115–120.CrossRef
    Fricke, J., Meurer, M., Dreisoner, J., & Schmidt-Traub, H. (1999). Effect of process parameters on the performance of a simulated moving bed chromatographic reactor. Chemical Engineering Science, 54, 1487–1492.CrossRef
    Fujita, K., Hara, K., Hashimoto, H., & Kitahara, S. (1990b). Transfructosylation catalyzed by β-fructofuranosidase I from Arthrobacter sp. K-1. Agricultural and Biological Chemistry, 54, 2655–2661.CrossRef
    Fujita, K., Hara, K., Hashimoto, H., & Kitahata, S. (1990a). Purification and some properties of beta-fructofuranosidase I from Arthrobacter sp. K-1. Agricultural and Biological Chemistry, 54, 913–919.CrossRef
    Fujita, K., Ito, T., & Kishino, E. (2009). Characteristics and applications of lactosucrose. Proc Res Soc Japan Sugar Refineires Technology, 57, 13–21.
    Fujita, K., Kuwahara, N., Tanimoto, T., Koizumi, K., Iizuka, M., Minamiura, N., Furuichi, K., & Kitahata, S. (1994). Chemical structures of heterooligosaccharides produced by Arthrobacter sp. K-1 β-fructofuranosidase. Bioscience, Biotechnology and Biochemistry, 58, 239–243.CrossRef
    Fujita, K., Osawa, T., Mikuni, K., Hara, K., Hashimoto, H., & Kitahara, S. (1991). Production of lactosucrose by β-fructofuranosidase and some of its physical properties. Denpun Kagaku, 38, 1–7.CrossRef
    Gänzle, M. G., Haase, G., & Jelen, P. (2008). Lactose: crystallization, hydrolysis and value-added derivatives. International Dairy Journal, 18, 685–694.CrossRef
    Gao, C., Ma, C., & Xu, P. (2011). Biotechnological routes based on lactic acid production from biomass. Biotechnology Advances, 29(6), 930–939.CrossRef
    Gassem, M. A., & Abu-Tarboush, H. M. (2000). Lactic acid production by Lactobacillus delbrueckii ssp. bulgaricus in camel’s and cow’s wheys. Milchwissenschaft, 55, 374–378.
    Ghaly, A.E., El-Taweel, A.A. (1994). Kinetics of batch production of ethanol from cheese whey. Biomass and Bioenergy, 6(6), 465–478.
    Giorno, L., & Drioli, E. (1997). Catalytic behaviour of lipase free and immobilized in biphasic membrane reactor with different low water-soluble substrates. Journal of Chemical Technology and Biotechnology, 69, 11–14.CrossRef
    Giorno, L., Mazzei, R., & Drioli, E. (2009). Biochemical membrane reactors in industrial processes. Weinheim: Membrane operations: innovative separations and transformations.
    Göksungur, Y., Gündüz, M., & Harsa, S. (2005). Optimization of lactic acid production from whey by L casei NRRL B-441 immobilized in chitosan stabilized Ca-alginate beads. Journal of Chemical Technology and Biotechnology, 80(11), 1282–1290.CrossRef
    Gorin, P. A. J., Spencer, J. F. T., & Phaff, H. J. (1964). The structures of galactosyl-lactose and galactobiosyllactose produced from lactose by Sporobolomyces singularis. Canadian Journal of Chemistry, 42, 1341–1344.CrossRef
    Gosling, A., Stevens, G. W., Barber, A. R., Kentish, S. E., & Gras, S. L. (2010). Recent advances refining galactooligosaccharide production from lactose. Food Chemistry, 121(2), 307–318.CrossRef
    Gosling, A., Stevens, G. W., Barber, A. R., Kentish, S. E., & Gras, S. L. (2011). Effect of the substrate concentration and water activity on the yield and rate of the transfer reaction of beta-galactosidase from Bacillus circulans. Journal of Agricultural and Food Chemistry, 59(7), 3366–3372.
    Goulas, A., Tzortzis, G., & Gibson, G. R. (2007). Development of a process for the production and purification of α- and β-galactooligosaccharides from Bifidobacterium bifidum NCIMB 41171. International Dairy Journal, 17, 648–656.CrossRef
    Guerreroa, C., Veraa, C., Ploub, F., & Illanes, A. (2011). Influence of reaction conditions on the selectivity of the synthesis of lactulose with microbial β -galactosidases. Journal of Molecular Catalysis B: Enzymatic, 72, 206–212.
    Gupte, A. M., & Nair, J. S. (2010). β-Galactosidase production and ethanol using Kluyveromyces marxianus NCIM3551. Journal of Scientific and Industrial Research, 69, 855–859.
    Gurung, N., Ray, S., Bose, S., Rai, V. (2013). A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Research International, 1–18
    Gutiérrez, L.-F., Hamoudi, S., & Belkacemi, K. (2011). Selective production of lactobionic acid by aerobic oxidation of lactose over gold crystallites supported on mesoporous silica. Applied Catalysis A: General, 402, 94–103.CrossRef
    Gutiérrez, L.-F., Hamoudi, S., & Belkacemi, K. (2012a). Effective gold catalyst supported on mesoporous silica decorated by ceria for the synthesis of high value lactobionic acid. Applied Catalysis A: General, 425-426, 213–223.CrossRef
    Gutiérrez, L. F., Hamoudi, S., & Belkacemi, K. (2012b). Lactobionic acid: a high value-added lactose derivative for food and pharmaceutical applications. International Dairy Journal, 26, 103–111.CrossRef
    Han, W. C., Byun, S. H., Kim, M. H., Sohn, E. H., Lim, J. D., Um, B. H., Kim, C. H., Kang, S. A., & Jang, K. H. (2009). Production of lactosucrose from sucrose and lactose by a levansucrase from Zymomonas mobilis. Journal of Microbiology and Biotechnology, 19, 1153–1160.CrossRef
    Han, W. C., Byun, S. H., Lee, J. C., Kim, M. H., Kang, S. A., Kim, C. H., Wha Son, E., & Jang, K. H. (2007). Synthesis of lactosucrose formed by levansucrase from Pseudomonas aurantiaca. Journal of Biotechnology, 131, S113.CrossRef
    Hansson, T., & Adlercreutz, P. (2001). Optimization of galacto-oligosaccharide production from lactose using b-glycosidases from hyperthermophiles. Food Biotechnology, 15, 79–97.CrossRef
    Hansson, T., Kaper, T., van der Oost, J., de Vos, W. M., & Adlercreutz, P. (2008). Improved oligosaccharide synthesis by protein engineering of β-glucosidase CelB from hyperthermophilic Pyrococcus furiosus. Biotechnology and Bioengineering, 73, 203–210.CrossRef
    Hashimoto, K., Adachi, S., Noujima, H., & Ueda, Y. (1983). A new process combining adsorption and enzyme reaction for producing higher-fructose syrup. Biotechnology and Bioengineering, 25(10), 2371–2393.CrossRef
    Hendriks, H.E.J. (1991). Selective catalytic oxidation of lactose and related carbohydrates. Eindhoven: Technische Universiteit Eindhoven. Ph.D. thesis.
    Hestrin, S., & Avigad, G. (1958). The mechanisms of polysaccharide production from sucrose. Biochemical Journal, 69, 388–395.CrossRef
    Hicks, K. B., & Parrish, F. W. (1980). A new method for the preparation of lactulose from lactose. Carbohydrate Research, 82, 393–397.
    Hicks, K., Raupp, D., & Smith, W. (1984). Preparations and purification of lactulose from sweet cheese whey ultrafiltrate. Journal of Agricultural and Food Chemistry, 32, 288–292.CrossRef
    Ho, L. J., Lim, J. S., Song, Y. S., Kang, S. W., Park, C., & Kim, S. W. (2007). Optimization of Culture Medium for Lactosucrose (4G-β-D-Galactosylsucrose) Production by Sterigmatomyces elviae Mutant Using Statistical Analysis. Journal of Microbiology and Biotechnology, 17(12), 1996–2004.
    Hodge, J. E. (1955). The Amadori Rearrangement. In M. L. Wolfromand, & R. S. Tipson (Eds.), Advances in Carbohydrate Chemistry (pp. 169–205). New York: Academic Press.
    Hofvendahl, K., & Hahn-Hägerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microbial Technology, 26, 87–107.
    Hofvendahl, K., & Hahn-Heagerda, B. (1997). L-Lactic acid production from whole wheat flour hydrolysate using strains of Lactobacilli and Lactococci. Enzyme and Microbial Technology, 20(4), 301–307.CrossRef
    Hong, Y. H., Lee, D. W., Lee, S. J., Choe, E. A., Kim, S. B., Lee, Y. H., Cheigh, C. I., & Pyun, Y. R. (2007). Production of D-tagatose at high temperatures using immobilized Escherichia coli cells expressing L-arabinose isomerase from Thermotoga neapolitana. Biotechnology Letters, 29(4), 569–574.CrossRef
    Hsu, C. A., Lee, S. L., & Chou, C. C. (2007). Enzymatic production of galactooligosaccharides by β-galactosidase from Bifidobacterium longum BCRC 15708. Journal of Agricultural and Food Chemistry, 55, 2225–2230.CrossRef
    Hu, X., Robin, S., O’connell, S., Walsh, G., & Wall, J. G. (2010). Engineering of a fungal β-galactosidase to remove product inhibition by galactose. Applied Microbiology and Biotechnology, 87(5), 1773–1782.
    Hua, L., Nordkvist, M., Nielsen, P. M., & Villadsen, J. (2007). Scale-up of enzymatic production of lactobionic acid using the rotary jet head system. Biotechnology and Bioengineering, 97, 842–849.CrossRef
    Hung, M. N., & Lee, B. H. (2002). Purification and characterization of a recombinant β-galactosidase with transgalactosylation activity from Bifidobacterium infantis HL96. Applied Microbiology and Biotechnology, 58, 439–445.CrossRef
    Husain, Q. (2010). Beta galactosidases and their potential applications: a review. Critical Reviews in Biotechnology, 30(1), 41–62.CrossRef
    Ibrahim, O. O., & Spradley, J. E. (2000). Process for manufacturing tagatose. US Patent, 6, 057,135.
    Illanes, A. (2011). Whey upgrading by enzyme biocatalysis. Electronic Journal of Biotechnology, 14(6), 1–28.CrossRef
    In, M., & Chae, H. J. (1998). Characteristics of b-galactosidase with high transgalactosylation activity produced by Penicillium sp. KFCC 10888. Korean Journal of Applied Microbiology and Biotechnology, 26, 40–44.
    Isabell, H. S., Frush, H. L., & Bates, F. J. (1932). Manufacture of calcium gluconate by electrolytic oxidation of glucose. Industrial and Engineering Chemistry Research, 24, 375–378.CrossRef
    Isbell, H. S. (1934). Process for the preparation of calcium lactobionate. US Patent, 1(980), 996.
    Ishikawa, E., Sakai, T., Ikemura, H., Matsumoto, K., & Abe, H. (2005). Identification, cloning, and characterization of a Sporobolomyces singularis β-galactosidase-like enzyme involved in galacto-oligosaccharide production. Journal of Bioscience and Bioengineering, 99, 331–339.CrossRef
    Ismail, S.A.A., El-Mohamady, Y., Wafaa, A.H.,. Abou-Romia, R., Hashem, A.M. (2010). Cultural condition affecting the growth and production of β-galactosidase by Lactobacillus acidophilus NRRL 4495. Australian Journal of Basic and Applied Sciences, 4(10), 5051–5058.
    Ito, T., Fujita, K., Hara, K., Tonozuka, T., & Sakano, Y. (2002). Cloning and expression of β-fructofuranosidase gene from Arthrobacter sp. K-1. Journal of Applied Glycoscience, 49, 291–296.CrossRef
    Iwasaki, K. I., Nakajimab, M., & Nakao, S. C. (1996). Galacto-oligosaccharide production from lactose by an enzymic batch reaction using β-galactosidase. Process Biochemistry, 31, 69–76.CrossRef
    Iwase, K. (1991). Gluconic acid synthesis by the ectomycorrhizal fungus Tricholoma robustum. Canadian Journal of Botany, 70, 84–88.CrossRef
    Izumori, K., & Tsuzaki, K. (1988). Production of D-tagatose from D-galactitol by Mycobacterium smegmatis. Journal of Fermentation Technology, 66(2), 225–227.CrossRef
    Ji, E. S., Park, N. H., & Oh, D. K. (2005). Galacto-oligosaccharide production by a thermostable recombinant β-galactosidase from Thermotoga maritima. World Journal of Microbiology and Biotechnology, 21, 759–764.CrossRef
    Jin, F., Zhou, Z., Enomoto, H., Moriya, T., & Higashijima, H. (2004). Conversion mechanism of cellulosic biomass to lactic acid in subcritical water and acid-base catalytic effect of subcritical water. Chemistry Letter, 33, 126–127.CrossRef
    Jørgensen, F., Hansen, O., & Stougaard, P. (2001). High-efficiency synthesis of oligosaccharides with a truncated β-galactosidase from Bifidobacterium bifidum. Applied Microbiology and Biotechnology, 57(5–6), 647–652.
    Jørgensen, F., Hansen, O. C., & Stougaard, P. (2004). Enzymatic conversion of D-galactose to D-tagatose: heterologous expression and characterisation of a thermostable L-arabinose isomerase from Thermoanaerobacter mathranii. Applied Microbiology and Biotechnology, 64(6), 816–822.CrossRef
    Jung, E. S., Kim, H. J., & Oh, D. K. (2005). Tagatose production by immobilized recombinant Escherichia coli cells containing Geobacillus stearothermophilus L-arabinose isomerase mutant in a packed-bed bioreactor. Biotechnology Progress, 21(4), 1335–1340.CrossRef
    Kalisz, H. M., Hecht, H. J., Schomburg, D., & Schmid, R. D. (1991). Crystallization and preliminary X-ray diffraction studies of a deglycosylated glucose oxidase from Aspergillus niger. Journal of Molecular Biology, 213, 207–209.CrossRef
    Karski, S. (2006). Activity and selectivity of PdeBi/SiO2 catalysts in the light of mutual interaction between Pd and Bi. Journal of Molecular Catalysis A - Chemical, 253, 147–154.CrossRef
    Kawase, M., Inoue, Y., Araki, T., & Hashimoto, K. (1999b). The simulated moving-bed reactor for production of bisphenol A. Catalysis Today, 48, 199–209.CrossRef
    Kawase, M., Masaki, Y., Fricke, J., Tanigawa, T., Hashimoto, K. (1999a). Separation of reactants in the simulated moving-bed reactor. Proceedings of the Asia-Pacific Chemical Reaction Engineering Symposium 1999, Hong Kong, pp. 263–268
    Kawase, M., Pilgrim, A., Araki, T., & Hashimoto, K. (2001). Lactosucrose production using a simulated moving bed reactor. Chemical Engineering Science, 56, 453–458.CrossRef
    Kawase, M., Suzuki, T. B., Inoue, K., Yoshimoto, K., & Hashimoto, K. (1996). Increased esterification conversion by application of the simulated moving-bed reactor. Chemical Engineering Science, 51, 2971–2976.CrossRef
    Kim, B.C., Lee; Y.H., Lee, H.S., Lee, D.W., Choe, E.A., Pyun, Y.R. (2002). Cloning, expression and characterization of L-arabinose isomerase from Thermotoga neapolitana: bioconversion of D-galactose to D-tagatose using the enzyme. FEMS Microbiology Letters, 212(1), 121–126.
    Kim, H. J., Hyun, E. K., Kim, Y. S., Lee, Y. J., & Oh, D. K. (2006c). Characterization of an Agrobacterium tumefaciens D-psicose 3-epimerase that converts D-fructose to D-psicose. Applied and Environmental Microbiology, 72, 981–985.CrossRef
    Kim, H. J., Kim, J. H., Oh, H. J., & Oh, D. K. (2006b). Characterization of a mutated Geobacillus stearothermophilus L-arabinose isomerase that increases the production rate of D-tagatose. Journal of Applied Microbiology, 101(1), 213–221.CrossRef
    Kim, H. J., Oh, D. K. (2005). Purification and characterization of an L-arabinose isomerase from an isolated strain of Geobacillus thermodenitrificans producing D-tagatose. Journal of Biotechnology, 120, 162–173.
    Kim, H. J., Ryu, S. A., Kim, P., & Oh, D. K. (2003b). A feasible enzymatic process for D-tagatose production by an immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor. Biotechnology Progress, 19(2), 400–404.CrossRef
    Kim, H. O., Wee, Y. J., Kim, J. N., Yun, J. S., & Ryu, H. W. (2006d). Production of lactic acid from cheese whey by batch and repeated batch cultures of Lactobacillus sp. RKY2. Applied Biochemistry and Biotechnology, 131, 694–704.CrossRef
    Kim, J. W., Kim, Y. W., Roh, H. J., Kim, H. Y., Cha, J. H., Park, K. H., & Park, C. S. (2003a). Production of tagatose by a recombinant thermostable L-arabinose isomerase from Thermus sp. IM6501. Biotechnology Letters, 25, 963–967.CrossRef
    Kim, P. (2004). Current studies on biological tagatose using L-arabinose isomerase: a review and future perspective. Applied Microbiology and Biotechnology, 65, 243–249.
    Kim, Y. S., Parkand, C. S., Oh, D. K. (2006a). Lactulose production from lactose and fructose by a thermostabl β-galactosidase from Sulfolobus solfataricus. Enzyme Microbial Technology, 39, 903–908
    Kiryu, T., Kiso, T., Nakano, H., Ooe, K., Kimura, T., & Murakami, H. (2009). Involvement of Acetobacter orientalis in the production of lactobionic acid in Caucasian yogurt (“Caspian Sea yogurt”) in Japan. Journal of Dairy Science, 92, 25–34.CrossRef
    Kiryu, T., Yamauchi, K., Masuyama, A., Ooe, K., Kimura, T., Kiso, T., Nakano, H., & Murakami, H. (2012). Optimization of lactobionic acid production by Acetobacter orientalis isolated from Caucasian fermented milk, “Caspian Sea yogurt”. Bioscience, Biotechnology and Biochemistry, 76, 361–363.CrossRef
    Kiryu, T., Nakano, H., Kiso, T., & Murakami, H. (2008). Purification and characterization of a carbohydrate: acceptor oxidoreductase from Paraconiothyrium sp. that produces lactobionic acid efficiently. Bioscience, Biotechnology and Biochemistry, 72, 833–841.CrossRef
    Kitouni, M., & Oulmi, L. (2013). Optimization of cultural conditions for lactic acid production by Lactobacillus bulgaricus ATTC 11842 grown on whey. International Journal of Research in Engineering and Technology, 2(9), 487–493.CrossRef
    Klein, M. P., Fallavena, L. P., Schöffer, J. N., Ayub, M. A. Z., Rodrigues, R. C., Ninow, J. L., & Hertz, P. F. (2013). High stability of immobilized β-D-galactosidase for lactose hydrolysis and galactooligosaccharides synthesis. Carbohydrate Polymers, 95, 465–470.CrossRef
    Kluyver, A. J., De Ley, J., & Rijven, A. (1951). The formation and consumption of lactobionic and maltobionic acids by Pseudomonas species. Antonie Van Leeuwenhoek, 17, 1–14.CrossRef
    Kochetkov, N. K., & Bochkov, A. F. (1967). Chemistry of carbohydrates. 672.
    Koller, M., Bona, R., Chiellini, E., Grillo Fernandes, E., Horvat, P., Kutschera, C., Hesse, P., & Braunegg, G. (2008). Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Bioresource Technology, 99(11), 4854–4863.CrossRef
    Kotwal, S. M., & Shankar, V. (2009). Immobilized invertase. Biotechnology Advances, 27, 311–322.CrossRef
    Kourkutas, Y., Xolias, V., Kallis, M., Bezirtzoglu, E., & Kanellaki, M. (2005). Lactobacillus casei immobilization on fruit pieces for prebiotic additive, fermented milk and lactic acid production. Process Biochemistry, 40(1), 411–416.CrossRef
    Koutinas, A. A., Papapostolou, H., Dimitrellou, D., Kopsahelis, N., Katechaki, E., Bekatorou, A., & Bosnea, L. A. (2009). Whey valorisation: a complete and novel technology development for dairy industry starter culture production. Bioresource Technology, 100(15), 3734–3739.CrossRef
    Kozempel, M. L., Kurantz, M. J., Craig Jr., J. C., & Hicks, K. B. (1995). Development of a continuous lactulose process: separation and purification. Biotechnology Progress, 11, 592–595.CrossRef
    Kuusisto, J., Tokarev, A. V., Murzina, E. V., Roslund, M. U., Mikkola, J.-P., Murzin, D. Y., & Salmi, T. (2007). From renewable raw materials to high value-added fine chemicals—catalytic hydrogenation and oxidation of D-lactose. Catalysis Today, 121, 92–99.CrossRef
    Kyla-Nikkila, K., Hujanen, M., Leisola, M., & Palva, A. (2000). Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of pure L-(+)-lactic acid. Applied and Environmental Microbiology, 66, 3835–3841.CrossRef
    Laxmi, N. P., Mutamed, M. A., & Nagendra, P. S. (2011a). Effect of carbon and nitrogen sources on growth of Bifidobacterium animalis Bb12 and Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 and production of β-galactosidase under different culture conditions. International Food Research Journal, 18, 373–380.
    Laxmi, N. P., Mutamed, M. A., & Nagendra, P. S. (2011b). Effect of nitrogen sources on production of β-galactosidase from Bifidobacterium animalis Bb12 and Lactobacillus delbrueckii ssp. Bulgaricus ATCC 11842 grown in whey under different culture conditions. International Food Research Journal, 18, 445–450.
    Lee, D. W., Choe, E. A., Kim, S. B., Eom, S. H., Hong, Y. H., Lee, S. J., Lee, H. S., Lee, D. Y., & Pyun, Y. R. (2005b). Distinct metal dependence for catalytic and structural functions in the L-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus. Archives of Biochemistry and Biophysics, 434, 333–343.CrossRef
    Lee, D. W., Jang, H. J., Choe, E. A., Kim, B. C., Lee, S. J., Kim, S. B., Hong, Y. H., & Pyun, Y. R. (2004). Characterization of a thermostable L-arabinose (D-galactose) isomerase from the hyperthermophilic eubacterium Thermotoga maritime. Applied and Environmental Microbiology, 70(3), 1397–1404.CrossRef
    Lee, M. H., Lai, W. L., Lin, S. F., Liu, Y., Hsu, Y. H., & Tsai, Y. C. (2006). Purification and characterization of a novel cellooligosaccharide oxidase from rice pathogen Sarocladium oryzae. Enzyme and Microbial Technology, 39, 85–91.CrossRef
    Lee, S. J., Lee, D. W., Choe, E. A., Hong, Y. H., Kim, S. B., Kim, B. C., & Pyun, Y. R. (2005a). Characterization of a thermoacidophilic L-arabinose isomerase from Alicyclobacillus acidocaldarius: role of Lys-269 in pH optimum. Applied and Environmental Microbiology, 71, 7888–7896.CrossRef
    Lee, J. H., Lim, J. S., Park, C., Kang, S. W., Shin, H. Y., Park, S. W., & Kim, S. W. (2007a). Continuous production of lactosucrose by immobilized Sterigmatomyces elviae mutant. Journal of Microbiology and Biotechnology, 17, 1533–1537.
    Lee, J. H., Lim, J. S., Song, Y. S., Kang, S. W., Park, C., & Kim, S. W. (2007b). Optimization of culture medium for lactosucrose (G-β-Dgalactosylsucrose) production by Sterigmatomyces elviae mutant using statistical analysis. Journal of Microbiology and Biotechnology, 17, 1996–2004.
    Levin, G. V. (2002). Tagatose, the new GRAS sweetener and health product. Journal of Medicinal Food, 5, 23–26.
    Li, W., Xiang, X., Tang, S., Hu, B., Tian, L., Sun, Y., Ye, H., & Zeng, X. (2009). Effective enzymatic synthesis of lactosucrose and its analogues by β-D-galactosidase from Bacillus circulans. Journal of Agriculture and Food Chemistry, 57, 3927–3933.CrossRef
    Li, Y., Zhu, Y., Liu, A., & Sun, Y. (2011). Identification and characterization of a novel L-arabinose isomerase from Anoxybacillus flavithermus useful in D-tagatose production. Extremophiles, 15, 441–450.CrossRef
    Lim, B. C., Kim, H. J., Oh, D. K. (2008). Tagatose production with pH control in a stirred tank reactor containing immobilized L-arabinose rom Thermotoga neapolitana, Applied Biochemistry and Biotechnology, 149(3), 245-253.
    Lin, S. F., Hu, H. M., Inukai, T., & Tsai, Y. C. (1993). Production of novel oligosaccharide oxidase by wheat bran solid-state fermentation. Biotechnology Advances, 11, 417–427.CrossRef
    Litchfield, J. H. (2009). Lactic acid, microbially produced. In M. O. Schaechter (Ed.), Encyclopedia of microbiology (pp. 362–372). Oxford: Academic Press.CrossRef
    Lockwood, L.B., Stodola, F.H. (1950) Process of culturing bacteria. United States Patent Application Pub. No.: US2496297
    Lopez Leiva, M. H., & Guzman, M. (1995). Formation of oligosaccharides during enzymic hydrolysis of milk whey permeates. Process Biochemistry, 30, 757–762.CrossRef
    Lu, L., Xiao, M., Xu, X., Li, Z., & Li, Y. (2007). A novel β-galactosidase capable of glycosyl transfer from Enterobacter agglomerans B1. Biochemical and Biophysical Research Communications, 356, 78–84.CrossRef
    Lu, L. L., Xiao, M., Li, Z. Y., Li, Y. M., & Wang, F. S. (2009). A novel transglycosylating β-galactosidase from Enterobacter cloacae B5. Process Biochemistry, 44, 232–236.CrossRef
    Ludwig, R., Ozga, M., Zámocky, M., Peterbauer, C., Kulbe, K. D., & Haltrich, D. (2004). Continuous enzymatic regeneration of electron acceptors used by flavoenzymes: cellobiose dehydrogenase catalyzed production of lactobionic acid as an example. Biocatalysis and Biotransformation, 22, 97–104.CrossRef
    Magariello, E.R., & Islip, N. Y. (1956). Production of lactobionic acid and its δ-lactone. United States Patent Application Pub. No.: US 2746916.
    Maischberger, T., Leitner, E., Nitisinprasert, S., Juajun, O., Yamabhai, M., Nguyen, T. H., & Haltrich, D. (2010). β-Galactosidase from Lactobacillus pentosus: purification, characterization and formation of oligosaccharides. Biotechnology Journal, 5, 838–847.CrossRef
    Maischberger, T., Nguyen, T. H., Sukyai, P., Kittl, R., Riva, S., Ludwig, R., & Haltrich, D. (2008). Production of lactose-free galacto-oligosaccharide mixtures: comparison of two cellobiose dehydrogenases for the selective oxidation of lactose to lactobionic acid. Carbohydrate Research, 343, 2140–2147.CrossRef
    Maki-Arvela, P., Murzina, E. V., Campo, B., Heikkila, T., Leino, A.-R., Kordas, K., Wolf, D., Tokarev, A. D., & Murzin, D. Y. (2010). The effect of palladium dispersion and promoters on lactose oxidation kinetics. Research on Chemical Intermediates, 36, 423–442.CrossRef
    Maki-Arvela, P., Tokarev, A. V., Murzina, E. V., Campo, B., Heikkila, T., Brozinski, J.-M., Wolf, D., & Murzin, D. Y. (2011). Kinetics of lactose and rhamnose oxidation over supported metal catalysts. Physical Chemistry Chemical Physics, 13, 9268–9280.CrossRef
    Malvessi, E., Carra, S., Pasquali, F. C., Kern, D. B., da Silveira, M. M., & Ayub, M. A. Z. (2013). Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis. Journal of Industrial Microbiology and Biotechnology, 40, 1–10.CrossRef
    Martinez, F. A. C., Balciunas, E. M., Salgado, J. M., Gonzalez, J. M. D., Converti, A., & de Souza Oliveira, R. P. (2013). Lactic acid properties, applications and production: a review. Trends in Food Science and Technology, 30, 70–83.CrossRef
    Martinez-Fleites, C., Ortiz-Lombardia, M., Pons, T., Tarbouriech, N., Taylor, E. J., Arrieta, J. G., Hernandez, L., & Davies, G. J. (2005). Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus. Biochemical Journal, 390, 19–27.CrossRef
    Martínez-Villaluenga, C., Cardelle-Cobas, A., Corzo, N., Olano, A., & Villamiel, M. (2008). Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by β-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chemistry, 107, 258–264.CrossRef
    Matvievsky, V. Y. (1979). Investigation of process for lactose/lactulose syrup production for infantile food. Uglich Institute:Master of Science thesis.
    Mawson, A. J. (1994). Bioconversions for whey utilization and waste abatement. Bioresource Technology, 47(3), 195–203.CrossRef
    Mayer, J., Conrad, J., Klaiber, I., Lutz-Wahl, S., Beifuss, U., & Fischer, L. (2004). Enzymatic production and complete nuclear magnetic resonance assignment of the sugar lactulose. Journal of Agriculture and Food Chemistry, 52, 6983–6990.CrossRef
    Mayer, L., Kranz, B., & Fischer, L. (2010). Continuous production of lactulose by immobilized thermostable β-glycosidase from Pyrococcus furiosus. Journal of Biotechnology, 145, 387–393.CrossRef
    Mayo, B., Piekarczyk, T. A., Kowalczyk, M., Pablo, A., & Bardowski, J. (2010). Updates in the metabolism of lactic acid bacteria. In F. Mozzi, R. R. Raya, & G. M. Vignolo (Eds.), Biotechnology of lactic acid bacteria novel applications. Wiley-Blackwell: Massachusetts.
    Mazzei, R., Chakraborty, S., Drioli, E., & Giorno, L. (2010). Membrane bioreactors in functional food ingredients production. Weinheim: Membrane technology: Membranes for food applications.
    Mazzotti, M., Kruglov, A., Neri, B., Gelosa, D., & Morbidelli, M. (1996). A continuous chromatographic reactor: SMBR. Chemical Engineering Science, 51, 1827–1836.CrossRef
    Mehaia, M. A., & Cheryan, M. (1987). Production of lactic acid from sweet whey permeate concentrates. Process Biochemistry, 22, 185–188.
    Men, Y., Zhua, Y., Zhang, L., Kang, Z., Izumori, K., Sun, Y., Ma, Y. (2014). Enzymatic conversion of d-galactose to d-tagatose: cloning, overexpression and characterization of l-arabinose isomerase from Pediococcus pentosaceus PC-5. Microbiological Research, 169, 171–178.
    Meurer, M., AltenhoK ner, U., Strube, J., Untiedt, A., & Schmidt-Traub, H. (1996). Dynamic simulation of a simulated moving-bed chromatographic reactor for the inversion of sucrose. Starch/Starke, 48, 452–457.
    Mikuni, K., Wang, Q., Fujita, K., Hara, K., Yoshida, S., & Hashimoto, H. (2000). Continuous production of 4G-β-D-galactosylsucrose (lactosucrose) using immobilized β-fructofuranosidase. Journal of Applied Glycoscience, 47, 281–285.CrossRef
    Mirdamadi, S., Atashgahi, S., Rajabi, A., Aziz-Mohseni, F., Roayaei, M., & Hamedi, J. (2008). Cell entrapment of Lactobacillus casei subsp. casei ATCC 39392 for lactic acid production. Iranian Journal of Biotechnology, 6(1), 16–21.
    Mirescu, A., & Pruesse, U. (2007). A new environmental friendly method for the preparation of sugar acids via catalytic oxidation on gold catalysts. Applied Catalysis B: Environmental, 70, 644–652.CrossRef
    Mirescu, A., & Prüsse, A. (2006). Preparation of gold catalysts for glucose oxidation by incipient wetness. Catalysis Communications, 7, 11–17.CrossRef
    Miyamoto, Y., Ooi, T., & Kinoshita, S. (2000). Production of lactobionic acid from whey by Pseudomonas sp. LS13-1. Biotechnology Letters, 22, 427–430.CrossRef
    Montgomery, E. M., & Hudson, C. S. (1930). Relations between rotating power and structure in the sugar group. Synthesis of new disaccharide ketoses from lactose. Journal of American Chemical Society, 52, 2101–2111.
    Montilla, A., Castillo, M. D., Sanz, M. L., & Olano, A. (2005). Egg shell as catalyst of lactose isomerisation to lactulose. Food Chemistry, 90, 883–890.
    Moulin, G., & Galzy, P. (1984). Whey, a potential substrate for biotechnology. Biotechnology and Genetic Engineering Review, 1, 347–373.CrossRef
    Mozaffar, Z., Nakanishi, K., & Matsuno, R. (1985). Formation of oligosaccharides during hydrolysis of lactose in milk using β-galactosidase from Bacillus circulans. Journal of Food Science, 50, 1602–1606.CrossRef
    Mozaffar, Z., Nakanishi, K., & Matsuno, R. (1986). Continuous production of galactooligosaccharides from lactose using immobilized β-galactosidase from Bacillus circulans. Applied Microbiology and Biotechnology, 25, 224–228.
    Mozaffar, Z., Nakanishi, K., Matsuno, R., & Kamikubo, T. (1984). Purification and properties of β-galactosidases from Bacillus circulans. Agricultural and Biological Chemistry, 48, 3053–3061.CrossRef
    Mukhopadhyay, R., Chatterjee, S., Chatterjee, B. P., Banerjee, P. C., & Guha, A. K. (2005). Production of gluconic acid from whey by free and immobilized Aspergillus niger. International Dairy Journal, 15, 299–303.CrossRef
    Müller, D. (1928). Oxidation von Glukose mit Extrakten aus Aspergillus niger (Oxidation of glucose with the extracts from Aspergillus niger). Biochemische Zeitschrift, 199, 136–170.
    Munehiko, D., Tomioka, I., Tsurutani, R., Kitabatake, S., Nakajima, H. (1988). Method for production of a growth factor for Bifidobacterium sp. EP062858A2, Patent
    Muniruzzaman, S., Tokunaga, H., & Izumori, K. (1994). Isolation of Enterobacter agglomerans strain 221e from soil, a potent D-tagatose producer from galactitol. Journal of Fermentation and Bioengineering, 78(2), 145–148.CrossRef
    Murakami, H., Kawano, J., Yoshizumi, H., Nakano, H., & Kitahata, S. (2002). Screening of lactobionic acid producing microorganisms. Journal of Applied Glycoscience, 49, 469–477.CrossRef
    Murakami, H., Kiryu, T., Kiso, T., & Nakano, H. (2008). Production of calcium lactobionate by a lactose-oxidizing enzyme from Paraconiothyrium sp. KD-3. Journal of Applied Glycoscience, 55, 127–132.CrossRef
    Murakami, H., Seko, A., Azumi, M., Kiso, T., Kiryu, T., Kitahata, S., Simada, J., & Nakano, H. (2006). Microbial conversion of lactose to lactobionic acid by resting cells of Burkholderia cepacia No. 24. Journal of Applied Glycoscience, 53, 7–11.CrossRef
    Murakami, H., Seko, A., Azumi, M., Ueshima, N., Yoshizumi, H., Nakano, H., & Kitahata, S. (2003). Fermentative production of lactobionic acid by Burkholderia cepacia. Journal of Applied Glycoscience, 50, 117–120.CrossRef
    Murzina, E. V., Tokarev, A. V., Kordas, K., Karhu, H., Mikkola, J.-P., & Murzin, D. Y. (2008). D-Lactose oxidation over gold catalysts. Catalysis Today, 131, 385–392.CrossRef
    Nakao, M., Harada, M., Kodama, Y., Nakayama, T., Shibano, Y., & Amachi, T. (1994). Purification and characterization of a thermostable β-galactosidase with high transgalactosylation activity from Saccharopolyspora rectivirgula. Applied Microbial and Biotechnology, 40, 657–663.CrossRef
    Nakkharat, P., & Haltrich, D. (2006a). Purification and characterization of an intracellular enzyme with β-glucosidase and β-galactosidase activity from the thermophilic fungus Talaromyces thermophilus CBS 236.58. Journal of Biotechnology, 123(3), 304–313.CrossRef
    Nakkharat, P., & Haltrich, D. (2006b). β-Galactosidase from Talaromyces thermophilus immobilized onto Eupergit C for production of galacto-oligosaccharides during lactose hydrolysis in batch and packed-bed reactor. World Journal of Microbiology and Biotechnology, 23(6), 759–764.CrossRef
    Nakkharat, P., Kulbe, K. D., Yamabhai, M., & Haltrich, D. (2006). Formation of galactooligosaccharides during lactose hydrolysis by a novel β-galactosidase from the moderately thermophilic fungus Talaromyces thermophilus. Biotechnology Journal, 1, 663–638.CrossRef
    Nguyen, T. H., Splechtna, B., Krasteva, S., Kneifel, W., Kulbe, K. D., Divne, C., & Haltrich, D. (2007). Characterization and molecular cloning of a heterodimeric β-galactosidase from the probiotic strain Lactobacillus acidophilus R22. FEMS Microbiology Letters, 269, 136–144.CrossRef
    Nigatu, A. (2000). Evaluation of numerical analyses of RAPD and API 50 CH patterns to differentiate Lactobacillus plantarum, Lact. isolated from kocho and tef. Journal of Applied Microbiology, 89, 969–978.CrossRef
    Nishizuka, Y., Kuno, S., & Hayaishi, O. (1960). Lactose dehydrogenase, a new flavoprotein. The Journal of Biological Chemistry, 235, PC13.
    Nishizuka, Y., & Hayaishi, O. (1962). Enzymic formation of lactobionic acid from lactose. The Journal of Biological Chemistry, 237, 2721–2728.
    Nordkvist, M., Nielsen, P. M., & Villadsen, J. (2007). Oxidation of lactose to lactobionic acid by a Microdochium nivale carbohydrate oxidase: kinetics and operational stability. Biotechnology and Bioengineering, 97, 694–707.CrossRef
    Oberoi, H. S., Bansal, S., & Dhillon, G. S. (2008). Enhanced β-galactosidase production by supplementing whey with cauliflower waste. International Journal of Food Science and Technology, 43(8), 1499–1504.CrossRef
    Ogawa, J., & Shimizu, S. (2002). Industrial microbial enzymes: their discovery by screening and use in large-scale production of useful chemicals in Japan. Current Opinion in Biotechnology, 13(4), 367–375.CrossRef
    Oh, D. K. (2007). Tagatose: properties, applications, and biotechnological properties. Applied Microbiology and Biotechnology, 76, 1–8.CrossRef
    Oh, D. K., Kim, H. J., Ryu, S. A., Rho, H. J., & Kim, P. (2001). Development of an immobilization method of L-arabinose isomerase for industrial production of tagatose. Biotechnology Letters, 23(22), 1859–1862.CrossRef
    Ohtsuka, K., Tanoh, A., Ozawa, O., Kanematsu, T., Uchida, T., & Shinke, R. (1990). Purification and Properties of a β-Galactosidase with High Galactosyl Transfer Activity from Cryptococcus laurentii OKN-4. Journal of Fermentation and Bioengineering, 70, 301–307.
    Onda, A., Ochi, T., Kajiyoshi, K., & Yanagisawa, K. (2008). A new chemical process for catalytic conversion of D-glucose into lactic acid and gluconic acid. Applied Catalysis A: General, 343, 49–54.CrossRef
    Onishi, N., & Tanaka, T. (1997). Purification and characterization of galacto-oligosaccharide producing β-galactosidase from Sirobasidium magnum. Letters in Applied Microbiology, 24, 82–86.CrossRef
    Onishi, N., & Tanaka, T. (1998). Galacto-oligosaccharide production using a recycling cell culture of Sterigmatomyces elviae CBS8119. Letters in Applied Microbiology, 26(2), 136–139.CrossRef
    Onishi, N., Yamashiro, A., & Yokozeki, K. (1995). Production of galacto-oligosaccharide from lactose by Sterigmatomyces elviae CBS8119. Applied and Environmental Microbiology, 11, 4022–4025.
    Onishi, N., & Yokozeki, K. (1996). Gluco-oligosaccharide and galacto-oligosaccharide production by Rhodotorula minuta IF0879. Journal of Fermentation and Bioengineering, 82, 124–127.CrossRef
    Osman, A., Symeou, S., Trisse, V., Watson, A. K., Tzortzis, G., & Charalampopoulos, D. (2014). Synthesis of prebiotic galactooligosaccharides from lactose using bifidobacterial β-galactosidase (BbgIV) immobilized on DEAE-cellulose, Q-Sepharose and amino-ethyl agarose. Biochemical Engineering Journal, 82, 188–199.CrossRef
    Otieno, D. O. (2010). Synthesis of β-galactooligosaccharides from lactose using microbial β-galactosidases. Comprehensive Reviews in Food Science and Food Safety, 9(5), 471–482.CrossRef
    Ozawa, O., Ohtsuka, K., Uchida, T., & Usami, S. (1991). 4'-Galactosyllactose production in a Jar Fermentor by Cryptococcus laurentii OKN-4. Journal of Fermentation and Bioengineering, 72, 309–310.CrossRef
    Ozmihci, S., & Kargi, F. (2007). Effects of feed sugar concentration on continuous ethanol fermentation of cheese whey powder solution (CWP). Enzyme and Microbial Technology, 41(6–7), 876–880.CrossRef
    Palai, T., & Bhattacharya, P. K. (2013). Kinetics of lactose conversion to galacto-oligosaccharides by β-galactosidase immobilized on PVDF membrane. Journal of Bioscience and Bioengineering, 115(6), 668–673.CrossRef
    Palai, T., Mitra, S., & Bhattacharya, P. K. (2012). Kinetics and design relation for enzymatic conversion of lactose into galacto-oligosaccharides using commercial grade β-galactosidase. Journal of Bioscience and Bioengineering, 114(4), 418–423.CrossRef
    Palai, T., Singh, A. K., & Bhattacharya, P. K. (2014). Enzyme, β-galactosidase immobilized on membrane surface for galacto-oligosaccharides formation from lactose: kinetic study with feed flow under recirculation loop. Biochemical Engineering Journal, 88, 68–76.CrossRef
    Palframan, R., Gibson, G. R., & Rastall, R. A. (2003). Development of a quantitative tool for the comparison of the prebiotic effect of dietary oligosaccharides. Letters in Applied Microbiology, 37, 281–284.CrossRef
    Panesar, P. S., Kumari, S., & Panesar, R. (2010a). Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Research, 1-16.
    Panesar, P. S., Kennedy, J. F., Knill, C. J., & Kosseva, M. R. (2010b). Production of L(+) lactic acid by Lactobacillus casei from whey. Brazilian Archives of Biology and Technology, 53, 219–226.CrossRef
    Panesar, P. S., Panesar, R., Singh, R. S., Kennedy, J. F., & Kumar, H. (2006). Microbial production, immobilization and application of β-D-galactosidase. Journal of Chemical Technology and Biotechnology, 81(4), 530–543.CrossRef
    Park, H., Kim, H., Lee, J., Kim, D., & Oh, D. (2008). Galactooligosaccharide production by a thermostable β-galactosidase from Sulfolobus solfataricus. World Journal of Microbiology and Biotechnology, 24, 1553–1558.CrossRef
    Park, N. H., Choi, H. J., & Oh, D. K. (2005). Lactosucrose production by various microorganisms harboring levansucrase activity. Biotechnology Letters, 27, 495–497.CrossRef
    Parrish, F.W. (1970). Isomerization of glucose, maltose, and lactose with amino compounds. U.S. Patent 3514327.
    Paseephol, T., Darryl, M., Small, D. M., & Sherkat, F. (2008). Lactulose production from milk concentration permeate using calcium carbonate-based catalysts. Food Chemistry, 111, 283–290.
    Pazur, J. H., & Kleppe, K. (1964). The oxidation of glucose and related compounds by glucose oxidase from Aspergillus niger. Biochemistry, 3, 578–583.CrossRef
    Pedruzzi, I., Borges da Silva, E. A., & Rodrigues, A. E. (2008). Selection of resins, equilibrium and sorption kinetics of lactobionic acid, fructose, lactose and sorbitol. Separation and Purification Technology, 63, 600–611.CrossRef
    Pedruzzi, I., Borges da Silva, E. A., & Rodrigues, A. E. (2011). Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: a kinetic study. Enzyme and Microbial Technology, 49, 183–191.CrossRef
    Pedruzzi, I., Malvessi, E., Mata, V. G., Silva, E. A. B., Silveira, M. M., & Rodrigues, A. E. (2007). Quantification of lactobionic acid and sorbitol from enzymatic reaction of fructose and lactose by high-performance liquid chromatography. Journal of Chromatography A, 1145, 128–132.CrossRef
    Peretti, F. A., Silveira, M. M., & Zeni, M. (2009). Use of electrodialysis technique for the separation of lactobionic acid produced by Zymomonas mobilis. Desalination, 246, 253–257.
    Perini, B. L. B., Souza, H. C. M., Kelbert, M., Apati, G. P., Pezzin, A. P. T., & Schneider, A. L. S. (2013). Rapid transgalactosylation towards lactulose synthesis in a small-scale enzymatic membrane reactor (EMR). Chemical Engineering Transactions, 32, 991–996.
    Petzelbauer, I., Splechtna, B., & Nidetzky, B. (2001). Galactosyl transfer catalyzed by thermostable β-glycosidases from Sulfolobus solfataricus and Pyrococcus furiosus: kinetic studies of the reactions of galactosylated enzyme intermediates with a range of nucleophiles. Journal of Biochemistry, 130, 341–349.CrossRef
    Pfizer, C. (1957). Improvements in or relating to the preparation of metal gluconates. British patent, 786-288.
    Pilgrim, A., Kawase, M., Matsuda, F., Miura; K. (2006). Modeling of the simulated moving-bed reactor for the enzyme-catalyzed production of lactosucrose. Chemical Engineering Science, 61, 353–362.
    Pilgrim, A., Kawase, M., Ohashi, M., Fujita, K., Murakami, K., & Hashimoto, K. (2001). Reaction kinetics and modeling of the enzyme-catalyzed production of lactosucrose using β-fructofuranosidase from Arthrobacter sp. K-1. Bioscience, Biotechnology and Biochemistry, 65, 758–765.CrossRef
    Placier, G., Watzlawick, H., Rabiller, C., & Mattes, R. (2009). Evolved β-galactosidases from Geobacillus stearothermophilus with improved transgalactosylation yield for galacto-oligosaccharide production. Applied and Environmental Microbiology, 75, 6312–6321.CrossRef
    Planas, A., & Faijes, M. (2002). Glycosidases and glycol synthases in enzymatic synthesis of oligosaccharides: an overview. Afinidad LIX, 500, 295–313.
    Playne, M. J., & Crittenden, R. G. (2009). Galacto-oligosaccharides and other products derived from lactose. In P. F. Fox, & P. L. H. McSweeney (Eds.), Advanced dairy chemistry (pp. 121–201). New York: Springer.CrossRef
    Plessas, S., Bosnea, L., Psarianos, C., Koutinas, A. A., Marchant, R., & Banat, I. M. (2008). Lactic acid production by mixed cultures of Kluyveromyces marxianus, Lactobacillus delbrueckii ssp. bulgaricus and Lactobacillus helveticus. Bioresource Technology, 99, 5951–5955.CrossRef
    Plou, F. J., Gómez de Segura, A., & Ballesteros, A. (2007). Application of glycosidases and transglycosidases in the synthesis of oligosaccharides. In J. Polaina, & A. P. MacCabe (Eds.), Industrial enzymes: structure, function and application (pp. 141–157). New York: Springer.CrossRef
    Pollard, D. J., & Woodley, J. M. (2007). Biocatalysis for pharmaceutical intermediates: the future is now. Trends in Biotechnology, 25, 66–73.CrossRef
    Prakash, S., Suyama, K., Itoh, T., & Adachi, S. (1987). Oligosaccharide formation by Trichoderma harzianum in lactose containing medium. Biotechnology Letters, 9, 249–252.
    Prazeres, A. R., Carvalho, F., & Rivas, J. (2012). Cheese whey management: a review. Journal of Environmental Management, 110, 48–68.CrossRef
    Prenosil, J. E., Stuker, E., & Bourne, J. R. (1987). Formation of oligosaccharides during enzymatic lactose hydrolysis and their importance in a whey hydrolysis process: part II: experimental. Biotechnology and Bioengineering, 30, 1026–1031.CrossRef
    Pruksasri, S. (2007). Production and separation of galacto-oligosaccharides from lactose by β-galactosidase immobilized on nanofiltration membranes. Ph.D. Thesis, Ohio State University, 1–181.
    Rabiu, B. A., Jay, A. J., Gibson, G. R., & Rastall, R. A. (2001). Synthesis and fermentation properties of novel galacto-oligosaccharides by β-galactosidases from bifidobacterium species. Applied and Environmental Microbiology, 67, 2526–2530.CrossRef
    Ramachandran, S., Fontanille, P., Pandey, A., & Larroche, C. (2006). Gluconic acid: properties, applications and microbial production. Food Technology and Biotechnology, 44(2), 185–195.
    Rapin, J. D., Marison, I. W., Von Stockar, U., & Reilly, P. J. (1994). Glycerol production by yeast fermentation of whey permeate. Enzyme and Microbial Technology, 16(2), 143–150.CrossRef
    Rech, R., & Ayub, M. A. Z. (2006). Fed-batch bioreactor process with recombinant Saccharomyces cerevisae growing on cheese whey. Brazilian Journal of Chemical Engineering, 23, 435–442.
    Rech, R., & Ayub, M. A. Z. (2007). Simplified feeding strategies for fed-batch cultivation of Kluyveromyces marxianus in cheese whey. Process Biochemistry, 42(5), 873–877.
    Rech, R., Cassini, C. F., Secchi, A., & Ayub, M. (1999). Utilization of protein-hydrolyzed cheese whey for production of β-galactosidase by Kluyveromyces marxianus. Journal of Industrial Microbiology and Biotechnology, 23(2), 91–96.CrossRef
    Reuter, S., Rusborg Nygaard, A., & Zimmermann, W. (1999). β-Galactooligosaccharide synthesis with ß-galactosidases from Sulfolobus solfataricus, Aspergillus oryzae, and Escherichia coli. Enzyme and Microbial Technology, 25, 509–516.CrossRef
    Rhimi, M., & Bejar, S. (2006). Cloning, purification and biochemical characterization of metallic-ions independent and thermoactive L-arabinose isomerase from the Bacillus stearothermophilus US100 strain. Biochimica et Biophysica Acta, 1760, 191–199.CrossRef
    Rhimi, M., Chouayekh, H., Gouillouard, I., Maguin, E., & Bejar, S. (2011). Production of D-tagatose, a low caloric sweetener during milk fermentation using L-arabinose isomerase. Bioresource Technology, 102, 3309–3315.CrossRef
    Rhimi, M., Ilhammami, R., Bajic, G., Boudebbouze, S., Maguin, E., Haser, R., & Aghajari, N. (2010b). The acidtolerant L-arabinose isomerase from the food grade Lactobacillus sakei 23K is an attractive d-tagatose producer. Bioresour Technology, 101, 9171–9177.CrossRef
    Richmond, M. L., Gray, J. I., & Stine, C. M. (1981). Beta-galactosidase: review of recent research related to technological application, nutritional concerns, and immobilization. Journal of Dairy Science, 64(9), 1759–1771.CrossRef
    Rodrigues, L. R., Teixeira, J. A., & Oliveira, R. (2006). Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochemical Engineering Journal, 32(3), 135–142.CrossRef
    Roh, H. J., Yoon, S. H., & Kim, P. (2000). Preparation of L-arabinose isomerase originated from Escherichia coli as a biocatalyst for D-tagatose production. Biotechnology Letters, 22(3), 197–199.CrossRef
    Roitsch, T., & Gonzalez, M. C. (2004). Function and regulation of plant invertases: sweet sensations. Trends in Plant Science, 9, 606–613.CrossRef
    Rollini, M., & Manzoni, M. (2005). Bioconversion of D-galactitol to tagatose and dehydrogenase activity induction in Gluconobacter oxydans. Process Biochemistry, 40(1), 437–444.CrossRef
    Roukas, T., & Kotzekidou, P. (1996). Continuous production of lactic acid from deproteinized whey by coimmobilized Lactobacillus casei and Lactococcus lactis cells in a packed-bed reactor. Food Biotechnology, 10, 231–242.CrossRef
    Roukas, T., & Kotzekidou, P. (1998). Lactic acid production from deproteinized whey by mixed cultures of free and coimmobilized Lactobacillus casei and Lactococcus lactis cells using fedbatch culture. Enzyme and Microbial Technology, 22, 199–204.CrossRef
    Ruiz-Matute, A. L., Sanz, M. L., Corzo, N., Martin-Alvarez, P. J., Ibanez, E., Martinez-Castro, I., & Olano, A. (2007). Purification of lactulose from mixtures with lactose using pressurized liquid extraction with ethanol–water at different temperatures. Journal of Agriculture and Food Chemistry, 55, 3346–3350.CrossRef
    Ryu, S. A., Kim, C. S., Kim, H. J., Baek, D. H., & Oh, D. K. (2003). Continuous D-tagatose production by immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor. Biotechnology Progress, 19(6), 1643–1647.CrossRef
    Saha, T., Ghosh, D., Mukherjee, S., Bose, S., & Mukherjee, M. (2008). Cellobiose dehydrogenase production by the mycelial culture of the mushroom Termitomyces clypeatus. Process Biochemistry, 43, 634–641.CrossRef
    Sakai, T., Tsuji, H., Shibata, S., Hayakawa, K., & Matsumoto, K. (2008). Repeated batch production of galactooligosaccharides from lactose at high concentration by using alginate-immobilized cells of Sporobolomyces singularis YIT 10047. Journal of General and Applied Microbiology, 54, 285–293.CrossRef
    Sanders, M. E., & Klaenhammer, T. R. (2001). Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. Journal of Dairy Science, 84(2), 319–331.CrossRef
    Sanz, M. L., Gibson, G. R., & Rastall, R. A. (2005). Influence of disaccharide structure on prebiotic selectivity in vitro. Journal of Agriculture and Food Chemistry, 53, 5192–5199.CrossRef
    Satory, M., Fürlinger, M., Haltrich, D., Kulbe, K. D., Pittner, F., & Nidetzky, B. (1997). Continuous enzymatic production of lactobionic acid using glucose–fructose oxidoreductase in an ultrafiltration membrane reactor. Biotechnology Letters, 19, 1205–1208.CrossRef
    Schaafsma, G. (2008). Lactose and lactose derivatives as bioactive ingredients in human nutrition. International Dairy Journal, 18, 458–465.CrossRef
    Schepers, A., Thibault, J., & Lacroix, C. (2002). Lactobacillus helveticus growth and lactic acid production during pH-controlled batch cultures in whey permeate/yeast extract medium. Part I. Multiple factor kinetic analysis. Enzyme and Microbial Technology, 30(2), 176–186.CrossRef
    Schepers, A. W., Thibault, J., & Lacroix, C. (2006). Continuous lactic acid production in whey permeate/yeast extract medium with immobilized Lactobacillus helveticus in a two-stage process: model and experiments. Enzyme and Microbial Technology, 38, 324–337.CrossRef
    Schuster-Wolff-Bühring, R., Fischer, L., & Hinrichs, J. (2010a). Production and physiological action of the disaccharide lactulose. International Dairy Journal, 20, 731–741.CrossRef
    Schuster-Wolff-Bühring, R., Michel, R., & Hinrichs, J. (2010b). A new liquid chromatography method for the simultaneous and sensitive quantification of lactose and lactulose in milk. Dairy Science and Technology, 91, 27–37.
    Seibel, J., Moraru, R., Götze, S., Buchholz, K., Naamnieh, S., Pawlowski, A., & Hecht, H. J. (2006). Synthesis of sucrose analogues and the mechanism of action of Bacillus subtilis fructosyltransferase (levansucrase). Carbohydrate Research, 41, 2335–2349.CrossRef
    Seki, N., & Saito, H. (2012). Lactose as a source for lactulose and other functional lactose derivatives. International Dairy Journal, 22(2), 110–115.CrossRef
    Sen, P., Nath, A., Bhattacharjee, C., Chowdhury, R., & Bhattacharya, P. (2014). Process engineering studies on free and micro-encapsulated β-galactosidase in batch and pack-bed bioreactors for production of galactooligosaccharides. Biochemical Engineering Journal, 90, 59–72.CrossRef
    Seo, M. J. (2013). Characterization of an L-arabinose isomerase from Bacillus thermoglucosidasius for D-tagatose production. Bioscience, Biotechnology and Biochemistry, 77(2), 385–388.CrossRef
    Severo Junior, J. B. (2008). Síntese biocatalítica do sorbitol e ácido lactobiônico com separação simultânea por eletrodiálise. Rio de Janeiro:Universidade Federal do Rio de Janeiro. MSc thesis.
    Sheu, D.-C., Li, S.-Y., Duan, K.-J., & Chen, C. W. (1998). Production of galactooligosaccharides by β-galactosidase immobilized on glutaraldehyde-treated chitosan beads. Biotechnology Techniques, 12(4), 273–276.CrossRef
    Shieh, M. T., & Barker, P. E. (1996). Combined bioreaction and separation in a simulated counter-current chromatographic bioreactor separator for the hydrolysis of lactose. Journal of Chemical Technology and Biotechnology, 66, 265–278.CrossRef
    Shimonishi, T., Okumura, Y., & Izumori, K. (1995). Production of L-tagatose from galactitol by Klebsiella pneumoniae strain 40b. Journal of Fermentation and Bioengineering, 79(6), 620–622.CrossRef
    Shin, H., Park, J., & Yang, J. (1998). Continuous production of galacto-oligosaccharides from lactose by Bullera singularis β-galactosidase immobilized in chitosan beads. Process Biochemistry, 33, 787–792.CrossRef
    Shin, H., & Yang, J. (1996). Galactooligosaccharide synthesis from lactose by Penicillium funiculosum cellulase. Biotechnology Letters, 18, 143–144.CrossRef
    Shuler, M. L., & Kargi, F. (2002). Bioprocess engineering basic concept (second ed., ). Upper Saddle River:Prentice-Hall Inc..
    Singh, A. K., & Singh, K. (2012). Utilization of whey for the production of instant energy beverage by using response surface methodology. Advance Journal of Food Science and Technology, 4(2), 103–111.
    Singh, S. K., Ahmed, S. U., & Pandey, A. (2006). Metabolic engineering approaches for lactic acid production. Process Biochemistry, 41, 991–1000.CrossRef
    Siso, G.M.L. (1996). The biotechnological utilization of cheese whey: a review. Bioresourc. Technology, 57(1), 1–11.
    Splechtna, B., Nguyen, T. H., & Haltrich, D. (2007a). Comparison between discontinuous and continuous lactose conversion processes for the production of prebiotic galactooligosaccharides using β-galactosidase from Lactobacillus reuteri. Journal of Agricultural and Food Chemistry, 55, 6772–6777.CrossRef
    Splechtna, B., Nguyen, T. H., Steinbock, M., Kulbe, K. D., Lorenz, W., & Haltrich, D. (2006). Production of prebiotic galacto-oligosaccharides from lactose using β-galactosidases from Lactobacillus reuteri. Journal of Agricultural and Food Chemistry, 54, 4999–5006.CrossRef
    Splechtna, B., Nguyen, T. H., Zehetner, R., Lettner, H. P., Lorenz, W., & Haltrich, D. (2007b). Process development for the production of prebiotic galacto-oligosaccharides from lactose using β-galactosidase from Lactobacillus sp. Biotechnology Journal, 2, 480–485.CrossRef
    Splechtna, B., Petzelbauer, I., Baminger, U., Haltrich, D., Kulbe, K. D., & Nidetzky, B. (2001). Production of a lactose-free galacto-oligosaccharide mixture by using selective enzymatic oxidation of lactose into lactobionic acid. Enzyme and Microbial Technology, 29, 434–440.CrossRef
    Srivastava, A., Roychoudhury, P. K., & Sahai, V. (1992). Extractive lactic acid fermentation using ionexchange resin. Biotechnology and Bioengineering, 39(6), 607–613.
    Stadler-Szoke, A., Nyeste, L., & Hollo, J. (1980). Studies on the factors affecting gluconic acid and 5-keto gluconic acid formation by Acetobacter. Acta Alimentaria, 9, 155–172.
    Sternberg, M., & Lockwood, L. B. (1969). Oxidation of isomaltose by Pseudomonas taetrolens. Journal of Bacteriology, 99, 623.
    Stevenson, D. E., Stanley, R. A., & Furneaux, R. H. (1996). Oligosaccharide and alkyl β-galactopyranoside synthesis from lactose with Caldocellum saccharolyticum β-glycosidase. Enzyme and Microbial Technology, 18(8), 544–549.CrossRef
    Stodola, F. H., & Lockwood, L. B. (1947). The oxidation of lactose and maltose to bionic acids by Pseudomonas. Journal of Biological Chemistry, 171, 213–221.
    Swart, K., van de Vondervoort, P. J. I., Witteveen, C. F. B., & Visser, J. (1990). Genetic localisation of a series of genes affecting glucose oxidase levels in Aspergillus niger. Current Genetics, 18, 435–439.CrossRef
    Swoboda, B. E. P., & Massey, V. (1965). Purification and properties of the glucose oxidase from Aspergillus niger. The Journal of Biological Chemistry, 240, 2209–2215.
    Takahama, A., Kuze, J., Okano, S., Akiyama, K., Nakane, T., Takahashi, H., & Kobayashi, T. (1991). Production of lactosucrose by Bacillus natto levansucrase and some properties of the enzyme. Journal of Japan Society of Nutrition and Food Science, 38, 789–796.
    Taleghani, H.G., Najafpour, G.D., Ghoreyshi, A.A. (2014). Batch and continuous production of lactic acid using Lactobacillus bulgaricus (ATCC 8001). Pakistan Journal of Biotechnology, 11(1), 1–12.
    Tang, L., Li, Z., Dong, X., Yang, R., Zhang, J., & Mao, Z. (2011). Lactulose biosynthesis by β-galactosidase from a newly isolated Arthrobacter sp. Journal of Industrial Microbiology and Biotechnology, 38, 471–476.CrossRef
    Taskin, M., Esim, N., & Ortucu, S. (2012). Efficient production of L-lactic acid from chicken feather protein hydrolysate and sugar beet molasses by the newly isolated Rhizopus oryzae TS-61. Food and Bioproduct Processing, 90, 773–779.CrossRef
    Tejayadi, S., & Cheryan, M. (1995). Lactic acid from cheese whey permeate. Productivity and economics of a 1259 continuous membrane bioreactor. Applied Microbiology and Biotechnology, 43(2), 242–248.CrossRef
    Theander, O., & Nelson, D. A. (1988). Aqueous, high temperature transformation of carbohydrates relative to utilization of biomass. Advances in Carbohydrate Chemistry and Biochemistry, 46, 273–326.CrossRef
    Tieking, M., & Ganzle, M. G. (2005). Exopolysaccharides from cereal-associated lactobacilli. Trends in Food Science and Technology, 16, 79–84.CrossRef
    Tokarev, A. V., Murzina, E. V., Eranen, K., Markus, H., Plomp, A. J., Bitter, J. H., Maki-Arvela, P., & Murzin, D. Y. (2009). Lactose oxidation over palladium catalysts supported on active carbons and on carbon nanofibres. Research on Chemical Intermediates, 35, 155–174.CrossRef
    Tokarev, A. V., Murzina, E. V., Kuusisto, J., Mikkola, J.-P., Eranen, K., & Murzin, D. Y. (2006). Kinetic behaviour of electrochemical potential in three-phase heterogeneous catalytic oxidation reactions. Journal of Molecular Catalysis A - Chemical, 255, 199–208.CrossRef
    Tokarev, A. V., Murzina, E. V., Mikkola, J. P., Kuusisto, J., Kustov, L. M., & Murzin, D. Y. (2007). Application of in situ catalyst potential measurements for estimation of reaction performance: lactose oxidation over Au and Pd catalysts. Chemical Engineering Journal, 134, 153–161.CrossRef
    Tokarev, A. V., Murzina, E. V., Seelam, P. K., Kumar, N., & Murzin, D. Y. (2008). Influence of surface acidity in lactose oxidation over supported Pd catalysts. Microporous and Mesoporous Materials, 113, 122–131.CrossRef
    Torres, D. P. M., Gonçalves, M. P. F., Teixeira, J. A., & Rodrigues, L. R. (2010). Galacto-oligosaccharides: production, properties, applications and significance as prebiotics. Comprehensive Reviews in Food Science and Food Safety, 9(5), 438–454.CrossRef
    Tripathi, A.D., Srivastava, S. K., Singh, P., Singh, R.P., Singh, S.P., Jha, A., Yadav, P. (2015). Optimization of process variables for enhanced lactic acid production utilizing paneer whey as substrate in SMF. Applied Food Biotechnology, 2015, 2(2), 46–55.
    Vakil, J.R., Shahani, K.M. (1969). Carbohydrate metabolism of lactic acid cultures, V. Lactobionate and gluconate metabolism of Streptococcus lactis UN. Journal of Dairy Science, 52, 1928–1934.
    Van Griethuysen-Dilber, E., Flaschel, E., & Renken, A. (1988). Process development for the hydrolysis of lactose in whey by immobilised lactase of Aspergillus oryzae. Process Biochemistry, 23(2), 55–59.
    Van Hecke, W., Bhagwat, A., Ludwig, R., Dewulf, J., Haltrich, D., & Van Langehove, H. (2009b). Kinetic modeling of a bi-enzymatic system for efficient conversion of lactose to lactobionic acid. Biotechnology and Bioengineering, 102, 1475–1482.CrossRef
    Van Hecke, W., Haltrich, D., Frahm, B., Brod, H., Dewulf, J., Van Langenhove, H., & Ludwig, R. (2011). A biocatalytic cascade reaction sensitive to the gas–liquid interface: modeling and upscaling in a dynamic membrane aeration reactor. Journal of Molecular Catalysis B: Enzymatic, 68, 154–161.CrossRef
    Van Hecke, W., Ludwig, R., Dewulf, J., Auly, M., Messiaen, T., Haltrich, D., & Van Langenhove, H. (2009a). Bubble-free oxygenation of a bi-enzymatic system: effect on biocatalyst stability. Biotechnology and Bioengineering, 102, 122–131.CrossRef
    van Hijum, S. A., Kralj, S., Ozimek, L. K., Dijkhuizen, L., & van Geel-Schutten, I. G. (2006). Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiology and Molecular Biology Reviews, 70, 157–176.CrossRef
    Vera, C., Guerrero, C., Conejeros, R., & Illanes, A. (2012). Synthesis of galactooligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme and Microbial Technology, 50, 188–194.CrossRef
    Villamiel, M., Corzo, N., Foda, M. I., Montes, F., & Olano, A. (2002). Lactulose formation catalysed by alkaline-substituted sepiolites in milk permeate. Food Chemistry, 76, 7–11.CrossRef
    Wallenfels, K. (1951). Enzymatische synthese von oligosacchariden aus disacchariden. Naturwissenschaften, 38(13), 306–307.CrossRef
    Wanarska, M., Kur, J. (2012). A method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting β-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22c; Microbial Cell Factories, 11, 113.
    Wee, Y-J., Kim, J.-N., Ryu, H.-W. (2006). Biotechnological production of lactic acid and its recent applications. Food Technology and Biotechnology, 44(2), 163–172.
    Wenkin, M., Touillaux, R., Ruiz, P., Delmon, B., & Devillers, M. (1996). Influence of metallic precursors on the properties of carbon-supported bismuth-promoted palladium catalysts for the selective oxidation of glucose to glucanic acid. Applied Catalysis: A- General, 148, 181–199.CrossRef
    Win, T. T., Isono, N., Kusnadi, Y., Watanabe, K., Obae, K., Ito, H., & Matsui, H. (2004). Enzymatic synthesis of two novel non-reducing oligosaccharides using transfructosylation activity with β-fructofuranosidase from Arthrobacter globiformis. Biotechnology Letters, 26, 499–503.CrossRef
    Wit, G. de, Vlieger, J. J. de, Kock-van Dalen, A. C., Heus, R., Laroy, R., van Hengstum, A. J., Kieboom, A. P. G., & van Bekkum, H. (1981). Catalytic dehydrogenation of reducing sugars in alkaline solution. Carbohydrate Research, 91, 125–138.
    Witteveen, C. F. B., Veenhuis, M., & Visser, J. (1992). Localization of glucose oxidase and catalase activities in Aspergillus niger. Applied and Environmental Microbiology, 58, 1190–1194.
    Wu, X., Jiang, S., Liu, M., Pan, L., Zheng, Z., & Luo, S. (2011). Production of L-lacticacid by Rhizopus oryzae using semicontinuous fermentation in bioreactor. Journal of Industrial Microbiology and Biotechnology, 38, 565–671.CrossRef
    Xu, Z., Qing, Y., Li, S., Feng, X., Xu, H., & Ouyang, P. (2011). A novel l-arabinose isomerase from Lactobacillus fermentum CGMCC2921 for d-tagatose production: gene cloning, purification and characterization. Journal of Molecular Catalysis B: Enzymatic, 70, 1–7.CrossRef
    Yakovleva, O. N. (1963). Method for carbohydrate production for infantile food. Master of Science thesis:State University of Kiev.
    Yang, Y. B., & Montgomery, R. (1996). Alkaline degradation of glucose: effect of initial concentration of reactants. Carbohydrate Research, 280, 27–45.
    Yang, S. T., Marchio, J. L., & Yen, J. W. (1994). A dynamic light scattering study of β-galactosidase: environmental effects on protein conformation and enzyme activity. Biotechnology Progress, 10(5), 525–531.CrossRef
    Yoo, I.K., Chang, H.N., Lee, E.G., Chang, Y.K., Moon, S.H. (1996). Effect of pH on the production of lactic acid and secondary products in batch cultures of Lactobacillus casei. Journal of Microbiology and Biotechnology, 6(6), 482–486.
    Young, E. (2006). Lactitol. In H. Mitchell (Ed.), Sweeteners and sugar alternatives in food technology (pp. 205–222). New York: Wiley-Blackwell.CrossRef
    Zafar, S., & Owais, M. (2006). Ethanol production from crude whey by Kluyveromyces marxianus. Biochemical Engineering Journal, 27(3), 295–298.CrossRef
    Zhang, H., Jiang, B., & Pan, B. (2007). Purification and characterization of L-arabinose isomerase from Lactobacuillus plantarum producing D-tagatose. World Journal of Microbiology and Biotechnology, 23(5), 641–646.CrossRef
    Zhang, Y. W., Prabhu, P., & Lee, J. K. (2009). Immobilization of Bacillus licheniformis L-arabinose isomerase for semi-continuous L-ribulose production. Bioscience, Biotechnology and Biochemistry, 73(10), 2234–2239.CrossRef
    Zhao, B., Wang, L., Li, F., Hu, D., Ma, C., Ma, Y., & Xuc, P. (2010). Kinetics of D-lactic acid production by Sporolactobacillus sp. strain CASD using repeated batch fermentation. Bioresource Technology, 101, 6499–6505.CrossRef
    Zheng, P., Yu, H., Sun, Z., Ni, Y., Zhang, W., Fan, Y., & Xu, Y. (2006). Production of galactooligosaccharides by immobilized recombinant β-galactosidase from Aspergillus candidus. Biotechnology Journal, 1, 1464–1470.CrossRef
    Zokaee, F., Kaghazchi, T., Zare, A., & Soleimani, M. (2002). Isomerization of lactose to lactulose—study and comparison of three catalytic systems. Process Biochemistry, 37, 629–635.CrossRef
  • 作者单位:Arijit Nath (1)
    Balázs Verasztó (1)
    Somjyoti Basak (2)
    András Koris (1)
    Zoltán Kovács (1)
    Gyula Vatai (1)

    1. Department of Food Engineering, Faculty of Food Science, Corvinus University of Budapest, Ménesi str. 44, Budapest, 1118, Hungary
    2. Central Glass and Ceramic Research Institution, Jadavpur, Kolkata, West Bengal, 700032, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Food Science
    Chemistry
    Agriculture
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1935-5149
文摘
Due to stricter environmental legislation and implementation of the “waste valorization” concept, recycling of dairy effluent, whey, has drawn a considerable attention. The main constituent of whey is lactose, which is responsible for high biological oxygen demand (BOD) and chemical oxygen demand (COD) values. Therefore, without going to its direct disposal into aquatic system, synthesis of nutraceuticals from lactose is considered a commendable challenge. Lactose-derived nutraceuticals, such as galacto-oligosaccharide (GOS), lactulose, lactitol, lactosucrose, lactobionic acid, gluconic acid, lactone, and tagatose, have been synthesized through different chemical and biochemical reactions, such as hydrolysis, transgalactosylation, oxidation, reduction, isomerization, and hydrogenolysis, considering raw whey or isolated lactose as feedstock. Pure biocatalyst (enzyme) and inorganic catalyst have been used for the synthesis of lactose-based nutraceuticals by different types of operations, such as conventional batch and continuous bioreactors with free catalyst, continuous packed bed bioreactor with immobilized catalyst, moving bed reactor, and membrane-assigned bioreactor. Moreover, in many cases, lactose-based nutraceuticals (lactic acid, lactosucrose, lactobionic acid, gluconic acid, and tagatose) have been synthesized by microbial fermentation process. Free microbial cell in batch and continuous fermentor and whole cell immobilized packed bed bioreactor have been used for this purpose. This review presents and compares different process-related technological aspects for synthesis of lactose-derived nutraceuticals from whey. Keywords Whey Lactose Lactose-derived nutraceuticals Bioreactor Catalyst

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700