Optimization of Thermoelectric Performance of Anisotropic Ag x Sn1↿em>x Se Compounds
详细信息    查看全文
  • 作者:Huaqian Leng ; Min Zhou ; Jie Zhao ; Yemao Han ; Laifeng Li
  • 关键词:Thermoelectric performance ; SnSe ; anisotropy ; spark plasma sintering
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:45
  • 期:1
  • 页码:527-534
  • 全文大小:1,666 KB
  • 参考文献:1.G.S. Nolas, J. Sharp, and J. Goldsmid, Thermoelectrics: basic principles and new materials developments, Vol. 45 (New York: Springer-Verlag Berlin Heidelberg, 2001).
    2.D.R. Brown, T. Day, K.A. Borup, S. Christensen, B.B. Iversen, and G.J. Snyder, APL Mater. 1, 052107 (2013).CrossRef
    3.H. Zhu, W.H. Sun, R. Armiento, P. Lazic, and G. Ceder, Appl. Phys. Lett. 104, 082107 (2014).CrossRef
    4.X.G. Wang, L. Wang, J. Liu, and L.M. Peng, Appl. Phys. Lett. 104, 132106 (2014).CrossRef
    5.Q. Zhang, X. Ai, W. Wang, L. Wang, and W. Jiang, Acta Mater. 73, 37 (2014).CrossRef
    6.Q. Zhang, X. Ai, L. Wang, Y. Chang, W. Luo, W. Jiang, and L. Chen, Adv. Funct. Mater. 25, 966 (2015).CrossRef
    7.M. Zhou, J.-F. Li, H. Wang, T. Kita, L. Li, and Z. Chen, J. Electron. Mater. 40, 862 (2011).CrossRef
    8.W.J. Xie, X.F. Tang, Y.G. Yan, Q.J. Zhang, and T.M. Tritt, Appl. Phys. Lett. 94, 102111 (2009).CrossRef
    9.A.D. LaLonde, Y. Pei, H. Wang, and G.J. Snyder. Mater. Today 14, 526 (2011).CrossRef
    10.J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).CrossRef
    11.H. Wang, Y. Pei, A.D. LaLonde, and G.J. Snyder, Adv. Mater. 23, 1366 (2011).CrossRef
    12.T.H. Zou, X.Y. Qin, D. Li, G.L. Sun, Y.C. Dou, Q.Q. Wang, B.J. Ren, J. Zhang, H.X. Xin, and Y.Y. Li, Appl. Phys. Lett. 104, 013904 (2014).CrossRef
    13.S.A. McDonald, G. Konstantatos, S. Zhang, P.W. Cyr, E.J.D. Klem, L. Levina, and E.H. Sargent, Nat. Mater. 4, 138 (2005).CrossRef
    14.L.D. Zhao, S.H. Lo, J. He, H. Li, K. Biswas, J. Androulakis, C.I. Wu, T.P. Hogan, D.-Y. Chung, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 20476 (2011).CrossRef
    15.C. Guillén, J. Montero, and J. Herrero, Phys. Status Solidi (a) 208, 679 (2011).CrossRef
    16.L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).CrossRef
    17.S. Sassi, C. Candolfi, J.B. Vaney, V. Ohorodniichuk, P. Masschelein, A. Dauscher, and B. Lenoir, Appl. Phys. Lett. 104, 212105 (2014).CrossRef
    18.C.-L. Chen, H. Wang, Y.-Y. Chen, T. Day, and G.J. Snyder, J. Mater. Chem. A 2, 11171 (2014).CrossRef
    19.A. Bellosi, F. Monteverde, and D. Sciti, Int. J. Appl. Ceram. Technol. 3, 32 (2006).CrossRef
    20.A.S. Pashinkin, A.S. Malkova, V.A. Fedorov, and M.S. Mikhailova, Inorg. Mater. 42, 593 (2006).CrossRef
    21.K. Yamaguchi, K. Kameda, Y. Takeda, and K. Itagaki, Mater. Trans. JIM 35, 118 (1994).CrossRef
    22.S. Chen, K. Cai, and W. Zhao, Phys. B Condens. Matter 407, 4154 (2012).CrossRef
    23.H.I.K. Fukuda, T. Ishii, F. Toyoda, M. Yamanashi, and Y. Kibayashi, Fifteenth International Conference on IEEE, vol. 37, 1996.
    24.William J. Baumgardner, Joshua J. Choi, Yee-Fun Lim, and Tobias Hanrath, J. Am. Chem. Soc. 132, 9519 (2010).CrossRef
    25.F. Lotgering, J. Inorg. Nucl. Chem. 9, 113 (1959).CrossRef
    26.J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, Mater. Sci. Eng. B 117, 334 (2005).CrossRef
    27.K. Kutorasinski, B. Wiendlocha, S. Kaprzyk, and J. Tobola, Phys. Rev. B 91, 205201 (2015).CrossRef
    28.Y. Pei, H. Wang, and G.J. Snyder, Adv. Mater. 24, 6125 (2012).CrossRef
    29.H. Julian Goldsmid Introduction to Thermoelectricity, Vol. 34 (New York: Springer-Verlag Berlin Heidelberg, 2001).
    30.S. Wang, J. Yang, T. Toll, J. Yang, W. Zhang, and X. Tang, Sci. Rep. 5, 8307 (2015).CrossRef
    31.D. Morelli, V. Jovovic, and J. Heremans, Phys. Rev. Lett. 101, 035901 (2008).CrossRef
    32.M.D. Nielsen, V. Ozolins, and J.P. Heremans, Energy Environ. Sci. 6, 570 (2013).CrossRef
    33.Y. Zhang, E. Skoug, J. Cain, V. Ozoliņš, D. Morelli, and C. Wolverton, Phys. Rev. B 85, 054306 (2012).CrossRef
  • 作者单位:Huaqian Leng (1) (2)
    Min Zhou (1)
    Jie Zhao (1) (2)
    Yemao Han (1) (2)
    Laifeng Li (1)

    1. State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
    2. University of Chinese Academy of Sciences, Beijing, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
SnSe is a promising thermoelectric material due to its ultralow thermal conductivity. However, stoichiometric SnSe compounds exhibit very low intrinsic defect concentration (3 × 1017 cm−3) and poor electrical transport properties, limiting the thermoelectric performance. In the present work, we investigated the effect of Ag dopant on the thermoelectric properties of SnSe. The results demonstrate that all the Ag x Sn1−lic ">x Se compounds exhibited anisotropic thermoelectric properties. The carrier concentration in the Ag x Sn1−lic ">x Se compounds greatly increased with increase of the Ag content, saturating at 1.9 × 1019 cm−3 for Ag0.01Sn0.99Se at room temperature. We found that a maximum zT value of 0.74 was obtained for Ag0.01Sn0.99Se perpendicular to the pressing direction at 823 K, being 23% higher than that of undoped SnSe (zT = 0.6).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700