Cenoses of phototrophic algae of ultrasaline lakes in the Kulunda steppe (Altai krai, Russian Federation)
详细信息    查看全文
  • 作者:Ph. V. Sapozhnikov ; O. Yu. Kalinina ; M. A. Nikitin ; O. S. Samylina
  • 刊名:Oceanology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:56
  • 期:1
  • 页码:95-106
  • 全文大小:1,731 KB
  • 参考文献:1.N. N. Voronikhin, “Algological vegetation of the Kulunda steppe,” Tr. Gl. Bot. Sada, Akad. Nauk SSSR 28 (1–2), 12–40 (1929).
    2.N. N. Voronikhin, “Comparison of algae from freshwater and mineral reservoirs of Kulunda steppe,” in Collection of Scientific Papers Dedicated to Anniversary of B.A. Keller (Kommuna, Voronezh, 1931), pp. 273–279.
    3.N. N. Voronikhin and A. G. Khakhina, “Biology of the saline lakes of the Kulunda steppe,” Izv. Gl. Bot. Sada 28, 1–2 (1919).
    4.Z. I. Glezer, A. P. Zhuze, I. V. Makarova, A. I. Proshina- Lavrenko, and V. S. Sheshukova-Poretskaya, Diatom Algae of Soviet Union: Fossil and Modern, Ed. by A. I. Proshina-Lavrenko (Nauka, Leningrad, 1974), Vol. 1.
    5.P. O. Zav’yalov, E. G. Arashkevich, I. Bastida, F. V. Sapozhnikov, et al., The Great Aral Sea in the Beginning of 21 Century: Physics, Biology, and Chemistry (Nauka, Moscow, 2012) [in Russian].
    6.B. L. Isachenko, “Biogenic processes in the chloride, sulfate, and soda lakes of the Kulunda steppe,” in Expedition of Academy of Sciences of Soviet Union to the Kulunda Steppe in 1931–1933 (Academy of Sciences of Soviet Union, Leningrad, 1934), Part 1, No. 8, pp. 143–162.
    7.E. N. Kondrat’eva, I. V. Maksimova, and V. D. Samuilov, Phototrophic Microorganisms (Moscow State University, Moscow, 1989) [in Russian].
    8.T. G. Popova, “Diversity of algae in mineral reservoirs of Western Siberia,” Izv. Gl. Bot. Sada 29 (3/4), 237–264 (1930).
    9.O. S. Samylina, F. V. Sapozhnikov, O. Yu. Gainanova, A. V. Ryabova, M. A. Nikitin, and D. Yu. Sorokin, “Algo-bacterial communities of the Kulunda steppe (Altai region, Russia) soda lakes,” Microbiology (Moscow) 83 (6), 849–860 (2014).CrossRef
    10.I. N. Sukhanova, M. V. Flint, S. A. Mosharov, and V. M. Sergeeva, “Structure of the phytoplankton communities and primary production in the Ob River estuary and over the adjacent Kara Sea shelf,” Oceanology (Engl. Transl.) 50 (5), 785–800 (2010).
    11.V. V. Khlebovich, “Specific composition of aquatic fauna depending on the salinity of environment,” Zh. Obshch. Biol. 23 (2), 90–97 (1962).
    12.R. C. Edgar, “MUSCLE: multiple sequence alignment with high accuracy and high throughput,” Nucleic Acids Res. 32 (5), 1792–1797 (2004).CrossRef
    13.W. Benecke, “Uber farblose Diatomeen der Kieler Fohrde,” Jahrb. Wiss. Bot. 35, 535–572 (1900).
    14.J. S. Damste, G. Muyze, B. Abbas, et al., “The rise of the rhizosolenid diatoms,” Science 304 (5670), 584–587 (2004).CrossRef
    15.K. Fanjing, J. Qinxian, E. Jia, and Z. Mianping, “Characterization of a eukaryotic picoplankton alga, strain DGN-Z1, isolated from a soda lake in Inner Mongolia, China,” Nat. Resour. Environ. Iss. 15, art. 38 (2009).
    16.R. E. Hecky and P. Kilham, “Diatoms in alkaline, saline lakes: ecology and geochemical implications,” Limnol. Oceanogr., No. 18, 53–71 (1973).CrossRef
    17.D. B. Herbst and D. W. Blinn, “Experimental mesocosm studies of salinity effects on the benthic algal community of a saline lake,” J. Phycol., No. 34, 772–778 (1998).CrossRef
    18.G. Karsten, “Über farblose Diatomeen,” Flora, No. 89, 404 (1901).
    19.L. Krienitz, C. Bock, K. Kotut, and W. Luo, “Picocystis salinarum (Chlorophyta) in saline lakes and hot springs of East Africa,” Phycologia 51 (1), 22–32 (2012).CrossRef
    20.J. Lewin and R. A. Lewin, “Culture and nutrition of some apochlorotic diatoms of the genus Nitzschia,” J. Gen. Microbiol., No. 46, 361–367 (1967).CrossRef
    21.R. A. Lewin, L. Krienitz, R. Goericke, et al., “Picocystis salinarum gen. et sp. nov. (Chlorophyta)a new picoplanctonic green alga,” Phycologia 39 (6), 560–565 (2000).CrossRef
    22.M. Nei and S. Kumar, Molecular Evolution and Phylogenetics (Oxford University Press, New York, 2000).
    23.R. B. Perkerson, E. A. Perkerson, and D. A. Casamatta, “Phylogenetic examination of the cyanobacterial genera Geitlerinema and Limnotrix (Pseudanabaenaceae) using 16S rDNA sequence data,” Algological Stud. 134, 1–16 (2010).CrossRef
    24.R. B. Perkerson, J. R. Johansen, L. Kovácik, et al., “A unique pseudanabaenalean (cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data,” J. Phycol. 47 (6), 1397–1412 (2011).CrossRef
    25.E. G. Pringseeim, “Über farblose Diatomeen,” Arch. Mikrobiol., No. 16, 18 (1951).CrossRef
    26.S. Provazek, “Synedra hyalina, eine Apoclilorotisclie Bacillarie,” Österr. Bot. Z., No. 3, (1900).
    27.C. S. Roesler, C. W. Culbertson, S. M. Etheridge, et al., “Distribution, production and ecophysiology of Picocystis strain ML in Mono Lake, California,” Limnol. Oceanogr. 47 (2), 440–452 (2002).CrossRef
    28.E. C. Ruck and E. C. Theriot, “Origin and evolution of the canal raphe system in diatoms,” Protist 162 (5), 723–737 (2011).CrossRef
    29.N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Mol. Biol. Evol. 4, 406–425 (1987).
    30.F. V. Sapozhnikov, E. G. Arashkevich, and P. S. Ivanishcheva, “Biodiversity,” in The Handbook of Environmental Chemistry, Vol. 7: The Aral Sea Environment, Ed. A. G. Kostianoy and A. N. Kosarev (Springer-Verlag, New York, 2010), pp. 235–282.CrossRef
    31.K. Tamura, D. Peterson, N. Peterson, et al., “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Mol. Biol. Evol. 28, 2731–2739 (2011).CrossRef
  • 作者单位:Ph. V. Sapozhnikov (1)
    O. Yu. Kalinina (1)
    M. A. Nikitin (2)
    O. S. Samylina (3)

    1. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
    2. Belozersky Research Institute of Physicochemical Biology, Moscow State University, Moscow, Russia
    3. Winorgadsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
  • 刊物主题:Oceanography;
  • 出版者:Springer US
  • ISSN:1531-8508
文摘
In 2012, expeditions of the Institute of Microbiology, Russian Academy of Sciences, delivered samples of algo-bacterial mats from Kulunda steppe alkaline lakes (Petukhovskoe alkaline lake, Tanatar VI, and Gorchina III). The filamentous alga Ctenocladus circinnatus (Chlorophyta) acted as an edificator of the mats. The composition of cenoses algocomponents also included chlorophytes Dunaliella viridis and Picocystis salinarum as well as diatoms Anomeoneis sphaerophora, Brachysira brebissonii, B. zellensis, Mastogloia pusilla var. subcapitata, Nitzschia amphibia, N. cf. communis, and Nitzschia sp. 1. The composition and structure of phototrophic algae cenoses (including diatom taxocenes) were described for the investigated lakes for the first time. For the period from 2011 to 2012, the total mineralization significantly increased in lakes. This involved sensible alterations of cenoses. B. zellensis was the most permanent component of diatom taxocenes in both seasons. In the summer of 2011, it was often accompanied by A. sphaerophora and B. brebissonii. In the summer of 2012, A. sphaerophora was found only singularly in Lake Gorchina III, and some biotopes of Lake Tanatar VI were massively inhabited by N. cf. communis, including colonies that had not been previously described for the species. The genetic analysis of three diatoms, which are markedly different from each other in their appearance and were sampled from different lakes but were all determined as Nitzschia cf. communis, showed their complete similarity to each other with the 18S rRNA gene fragment and the highest similarity of all the three diatoms with the species Nitzschia communis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700