Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development
详细信息    查看全文
  • 作者:Zuzana Luka?ová (1)
    Renáta ?vubová (1)
    Jana Kohanová (1)
    Alexander Lux (1)
  • 关键词:Antioxidant enzymes ; Cadmium ; Cell walls ; Endodermis ; Maize ; Silicon
  • 刊名:Plant Growth Regulation
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:70
  • 期:1
  • 页码:89-103
  • 全文大小:919KB
  • 参考文献:1. Alscher G, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331-341
    2. Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principles of protein-dye-binding. Ann Biochem 72:248-54 CrossRef
    3. Cataldo CD, Garland TR, Wildung RE (1983) Cadmium uptake, kinetics in intact soybean plants. Plant Physiol 73:844-48 CrossRef
    4. Chaneva G, Parvanova P, Tzvetkova N, Uzunova A (2010) Photosynthetic response of maize plants against cadmium and Paraquat impact. Water Air Soil Pollut 208:287-93 CrossRef
    5. Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) CRS handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 283-84
    6. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochemie 88:1707-719 CrossRef
    7. ?ur?eková K, Huttová J, Mistrík I, Olle M, Tamás L (2007) Cadmium induces premature xylogenesis in barley roots. Plant Soil 290:61-8 CrossRef
    8. Ekmek?i Y, Tanyolac D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165:600-11 CrossRef
    9. Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91:11-7 CrossRef
    10. Feng J, Shi Q, Wang X, Wei M, Yang F, Xu H (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in / Cucumis / sativus L. Sci Hortic 123:521-30 CrossRef
    11. Fri? F, Fuchs WH (1970) Ver?nderungen der Aktivit?t einiger enzyme im Weizenblatt in Abh?ngigkeit von / Puccinia graministritici. Phytopathol 67:161-74 CrossRef
    12. Fu X, Dou Ch, Chen Y, Chen X, Shi J, Yu M, Xu J (2011) Subcellular distribution and chemical forms of cadmium in / Phytolacca americana L. J Hazard Mater 186:103-07 CrossRef
    13. Greger M, Landberg T, Lux A, Singh BR (2011) Influence of Si on Cd uptake and accumulation in wheat. Proceedings of the 5th international conference on silicon in agriculture, Beijing, China, September 13-8, 2011
    14. Guo ZG, Liu HX, Tian FP, Zhang ZH, Wang SM (2006) Effect of silicon on the morphology of shoots and roots of alfalfa ( / Medicago sativa). Aust J Exp Agric 46:1161-166 CrossRef
    15. Gzyl J, Rymer K, Gwozdz A (2009) Differential response of antioxidant enzymes to cadmium stress in tolerant and sensitive cell line of cucumber ( / Cucumis sativus L.). Acta Biochim Pol 56:723-27
    16. Harkin JM, Obst JR (1973) Lignification in trees: indication of exclusive peroxidase participation. Science 180:296-98
    17. Hattori T, Inanaga S, Tanimoto E, Lux A, Luxová M, Sugimoto Y (2003) Silicon—induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiol 44:743-49 CrossRef
    18. Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1997) Antioxidant enzyme and compound responses to chilling stress and their combining abilities in differentially sensitive maize hybrids. Crop Sci 37:857-63 CrossRef
    19. Kim YH, Kim CY, Song WK, Park DS, Kwon SY, Lee HS, Bang JW, Kwak SS (2008) Overexpression of sweetpotato / swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227:867-81 CrossRef
    20. Kollárová K, Vatehová Z, Slováková L, Li?ková D (2010) Interaction of galactoglucomannan oligosaccharides with auxin in mung bean primary root. Plant Physiol Biochem 48:401-06 CrossRef
    21. Kummerová M, Zezulka ?, Krá?ová K, Masarovi?ová E (2010) Effect of zinc and cadmium on physiological and production characteristics in / Matricaria recutita. Biol Plant 2:308-14 CrossRef
    22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-85 CrossRef
    23. Lagrimini LM (1991) Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase. Plant Physiol 96:577-83 CrossRef
    24. Liang YC, Wong JWC, Wei L (2005) Silicon-mediated enhancement of cadmium tolerance in maize ( / Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58:475-83 CrossRef
    25. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350-82 CrossRef
    26. Liu J, Qian M, Cai G (2007) Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. J Hazard Mater 143:443-47 CrossRef
    27. Luka?ová Kuliková Z, Lux A (2010) Silicon influence on maize, / Zea mays L., hybrids exposed to cadmium treatment. Bull Environ Contam Toxicol 85:243-50 CrossRef
    28. Lux A, Luxová M, Abe J, Tanimoto E, Hattori T, Inanaga S (2003) The dynamics of silicon deposition in the sorghum root endodermis. New Phytol 158:437-41 CrossRef
    29. Lux A, ?ottníková A, Opatrná J, Greger M (2004) Differences in structure of adventitious roots in / Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol Plant 120:537-45 CrossRef
    30. Lux A, Morita S, Abe J, Ito K (2005) An improved method for clearing and staining free-hand sections and whole-mount samples. Ann Bot 96:989-96 CrossRef
    31. Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21-7 CrossRef
    32. Madamanchi NR, Donahue JL, Cramer CL, Alscher RG, Pedersen K (1994) Differential response of Cu, Zn superoxide dismutases in two pea cultivars during a short-term exposure to sulphur dioxide. Plant Mol Biol 26:95-03 CrossRef
    33. Martinka M, Lux A (2004) Response of roots of three populations of / Silene dioica to cadmium treatment. Biologia 59:185-89
    34. Masarovi? D, Slováková ?, Bokor B, Bujdo? M, Lux A (2012) Effect of silicon application on / Sorghum bicolor exposed to toxic concentration of zinc. Biologia. doi:10.2478/s11756-012-0054-5
    35. Masarovi?ová E, Cicák A, ?tefan?ík I (1999) Plant responses to air pollution and heavy metal stresses. In: Pessarakli M (ed) Handbook of plant and crop stress, 2nd edn, Marcel Dekker, New York, Basel, pp 569-98
    36. Matoh T, Ishigaki K, Ohno K, Azuma J (1993) Isolation and characterization of boron–polysaccharide complex from radish roots. Plant Cell Physiol 34:639-42
    37. Neuman D, zur Neiden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochemistry 56:685-92 CrossRef
    38. Olmos E, Martinez-Solano JR, Piqueras A, Hellín E (2003) Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J Exp Bot 54:291-01 CrossRef
    39. Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9:534-40 CrossRef
    40. Pavlovi? A, Masarovi?ová E, Krá?ová K, Kubová J (2006) Response of chamomile plants ( / Matricaria recutita L.) to cadmium treatment. Bull Environ Contam Toxicol 77:763-71 CrossRef
    41. Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of / Phragmites / australis (Cav.) Trin. ex Steudel. Plant Physiol 133:830-37 CrossRef
    42. Pir?elová B, Kuna R, Libantová J, Morav?íková J, Matu?íková I (2011) Biochemical and physiological comparison of heavy metal-triggered defense responses in the monocot maize and dicot soybean roots. Mol Biol Rep 38:3437-446 CrossRef
    43. Redjala T, Zelko I, Sterckeman T, Legué V, Lux A (2011) Relationship between root structure and root cadmium uptake in maize. Environ Exp Bot 71:241-48 CrossRef
    44. Schreiber L (2010) Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci 15:546-53 CrossRef
    45. Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887-98 CrossRef
    46. Seregin IV, Shpigun LK, Ivanov VB (2004) Distribution and toxic effects of cadmium and lead on maize roots. Russ J Plant Physiol 51:525-33 CrossRef
    47. Shi X, Chaochun Z, Wang H, Zhang F (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272:53-0 CrossRef
    48. Shi X, Quingsheng C, Liu C (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul 61:45-2 CrossRef
    49. ?imonová E, Henselová M, Masarovi?ová E, Kohanová J (2007) Comparison of tolerance of / Brassica juncea and / Vigna radiata to cadmium. Biol Plant 51:488-92 CrossRef
    50. Sobkowiak R, Rymer K, Rucińska R, Deckert J (2004) Cadmiuminduced changes in antioxidant enzymes in suspension culture of soybean cells. Acta Biochim Pol 51:219-22
    51. Song A, Li Z, Zhanga J, Xueb G, Fanb F, Liang Y (2009) Silicon-enhanced resistance to cadmium toxicity in / Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. J Hazard Mater 172:74-3 CrossRef
    52. Vaculík M, Lux A, Luxová M, Tanimoto E, Lichtscheidl I (2009) Silicon mitigates cadmium inhibitory effects in young maize plants. Environ Exp Bot 67:52-8 CrossRef
    53. Vaculík M, Landberg T, Greger M, Luxová M, Stoláriková M, Lux A (2012) Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Ann Bot 110:433-43 CrossRef
    54. Vatehová Z, Kollárová K, Zelko I, Richterová-Ku?erová D, Bujdo? M, Li?ková D (2012) Interaction of silicon and cadmium in / Brassica juncea and / Brassica napus. Biologia 67:498-04 CrossRef
    55. Vázquez S, Fernandez-Pascaul M, Sanchez-Pardo B, Carpena RO, Zornoza P (2007) Subcellular compartmentalisation of cadmium in white lupine determined by energy-dispersive X-ray microanalysis. J Plant Physiol 164:1235-238 CrossRef
    56. Wagner JG (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173-10 CrossRef
    57. Wang L, Wang W, Chen Q, Cao W, Li M, Zhang F (2000) Silicon—induced cadmium tolerance of rice seedlings. J Plant Nutr 23:1397-406 CrossRef
    58. Weigel HJ, J?ger HJ (1980) Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiol 65:480-82 CrossRef
    59. White PJ (2001) The pathways of calcium movement to the xylem. J Exp Bot 52:891-99 CrossRef
    60. Wierzbicka MH, Przedpe?ska E, Ruzik R, Ouerdane L, Po?e?-Pawlak K, Jarosz M, Szpunar J, Szakiel A (2007) Comparison of the toxicity and distribution of cadmium and lead in plant cells. Protoplasma 231:99-11
    61. Young AJ (1991) The photoprotective role of carotenoids in higher plants. Physiol Plant 83:702-08
    62. Zelko I, Lux A (2004) Effect of cadmium on / Karwinskia humboldtiana roots. Biologia 59:205-09
    63. Zhang CH, Wang L, Nie Q, Zhang W, Zhang F (2008) Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice ( / Oryza sativa L.). Environ Exp Bot 62:300-07 CrossRef
    64. Zornoza P, Vázquez S, Esteban E, Fernández-Pascual M, Carpena R (2002) Cadmium—stress in nodulated white lupin: strategies to avoid toxicity. Plant Physiol Biochem 40:1003-009 CrossRef
  • 作者单位:Zuzana Luka?ová (1)
    Renáta ?vubová (1)
    Jana Kohanová (1)
    Alexander Lux (1)

    1. Department of Plant Physiology, The Faculty of Natural Sciences, Comenius University, Mlynská dolina, 842 15, Bratislava 4, Slovakia
  • ISSN:1573-5087
文摘
The objective of this study was to assess the effect of different Cd and Si concentrations on the maize plants. The following Cd and/or Si treatments were used: 5 Cd; 10 Cd; 100 Cd; 5 Cd?+?0.08 Si; 10 Cd?+?0.08 Si; 100 Cd?+?5 Si treatments (Cd concentration in μM, Si concentration in mM). The plant growth, photosynthetic pigments content, antioxidant enzymes activities (POX, SOD, CAT), Cd and Si accumulation, translocation and cell wall deposition of the maize plants was observed. Changes in the endodermal cell walls development and late metaxylem elements lignification due to Cd and/or Si treatment were also evaluated. The negative effect of Cd (5 and 10?μM) on the growth parameters was alleviated by Si at 0.08?mM. The positive effect of Si was not observed at higher Cd and Si concentrations. This indicates that the alleviating effect of Si on Cd toxicity depends on the Cd and Si concentrations. Plants responded to Cd toxicity by an increase of antioxidant enzyme activity. Silicon addition in Cd?+?Si treatment stimulated an increase in the activity of antioxidant enzymes in comparison with the Cd treatment. Chlorophyll and carotenoid content in the Cd treated plants was not significantly affected by Si. The young maize plants retained much more Cd in their roots as they translocated into the shoots. 5 Cd?+?0.08 Si and 10 Cd?+?0.08 Si treatments correlated with an increase in Cd concentration in the roots and shoots, and in the cell walls. Silicon caused a slight decrease of the Cd translocation into the shoots in 5 Cd?+?0.08 Si and 10 Cd?+?0.08 Si treatments. Negative correlation between the root Cd cell wall deposition and Cd translocation was observed. Cadmium and/or Si altered root anatomy. Cadmium enhanced suberin lamellae development and late metaxylem lignification; silicon in Cd?+?Si treatments accelerated suberin lamellae deposition and enhanced the tertiary endodermal cell walls formation in comparison with Cd treatments. Negative correlation between the endodermal cell walls development and Cd translocation was observed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700