A comparison of suberin monomers from the multiseriate exodermis of Iris germanica during maturation under differing growth conditions
详细信息    查看全文
  • 作者:Chris J. Meyer (1)
    Carol A. Peterson (1)
    Mark A. Bernards (2)
  • 关键词:Hydroponics ; Iris germanica ; Multiseriate exodermis ; Root development ; Suberin biosynthesis ; Suberin lamellae
  • 刊名:Planta
  • 出版年:2011
  • 出版时间:April 2011
  • 年:2011
  • 卷:233
  • 期:4
  • 页码:773-786
  • 全文大小:466KB
  • 参考文献:1. Armstrong W, Cousins D, Armstrong J, Turner D, Beckett P (2000) Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with / Phragmites australis. Ann Bot 86:687-03 CrossRef
    2. Baker DA (1971) Barriers to the radial diffusion of ions in maize roots. Planta 98:285-93 CrossRef
    3. Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB (2007) The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of / Arabidopsis. Plant Cell 19:351-68 CrossRef
    4. Bernards MA (2002) Demystifying suberin. Can J Bot 80:227-40 CrossRef
    5. Bernards MA, Lewis NG (1998) The macromolecular aromatic domain in suberized tissue: a changing paradigm. Phytochemistry 47:915-33 CrossRef
    6. Browse J, McCourt PJ, Somerville CR (1986) Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal Biochem 152:141-45 CrossRef
    7. Brundrett M, Enstone DE, Peterson CA (1988) A berberine–aniline blue fluorescent staining procedure for suberin, lignin and callose in plant tissue. Protoplasma 146:133-42 CrossRef
    8. Brundrett M, Kendrick B, Peterson CA (1991) Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethylene glycol–glycerol. Biotechnic Histochem 66:111-16 CrossRef
    9. Compagnon V, Diehl P, Benveniste I, Meyer D, Schaller H, Schreiber L, Franke R, Pinot F (2009) CYP86B1 is required for very long chain omega-hydroxyacid and alpha, omega-dicarboxylic acid synthesis in root and seed suberin polyester. Plant Physiol 150:1831-843 CrossRef
    10. De Rufz de Lavison J (1910) Du mode de pénétration de quelques sels dans la plante vivante. Role de l’endoderme. Revue Générale de Botanique 22:225-41
    11. Dean B, Kolattukudy P (1977) Biochemistry of suberization: incorporation of [1-4C]oleic acid and [1-4C]acetate into the aliphatic components of suberin in potato tuber disks ( / Solanum tuberosum). Plant Physiol 59:48-4 CrossRef
    12. Enstone DE, Peterson CA, Ma F (2003) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21:335-51 CrossRef
    13. Esau K (1965) Plant Anatomy. Wiley, New York
    14. Evert R, Botha C, Mierzwa R (1985) Free-space marker studies on the leaf of / Zea mays L. Protoplasma 126:62-3 CrossRef
    15. Franke R, Schreiber L (2007) Suberin—a biopolyester forming apoplastic plant interfaces. Curr Opinion Plant Biol 10:252-59 CrossRef
    16. Franke R, Briesen I, Wojciechowski T, Faust A, Yephremov A, Nawrath C, Schreiber L (2005) Apoplastic polyesters in Arabidopsis surface tissues—a typical suberin and a particular cutin. Phytochemistry 66:2643-658 CrossRef
    17. Franke R, H?fer R, Briesen I, Emsermann M, Efremova N, Yephremov A, Schreiber L (2009) The DAISY gene from / Arabidopsis encodes a fatty acid elongase condensing enzyme involved in the biosynthesis of aliphatic suberin in roots and the chalaza-micropyle region of seeds. Plant J 57:80-5 CrossRef
    18. Gra?a J, Pereira H (2000a) Methanolysis of bark suberins: analysis of glycerol and acid monomers. Phytochem Anal 11:45-1 CrossRef
    19. Gra?a J, Pereira H (2000b) Suberin structure in potato periderm: glycerol, long-chain monomers, and glyceryl and feruloyl dimers. J Agri Food Chem 48:5476-483 CrossRef
    20. H?fer R, Briesen I, Beck M, Pinot F, Schreiber L, Franke R (2008) The / Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega-hydroxylase involved in suberin monomer biosynthesis. J Exp Bot 59:2347-360 CrossRef
    21. Holloway P (1983) Some variations in the composition of suberin from the cork layers of higher plants. Phytochemistry 22:495-02 CrossRef
    22. Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52:2245-264 CrossRef
    23. Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990-000 CrossRef
    24. Kolattukudy PE (1984) Biochemistry and function of cutin and suberin. Can J Bot 62:2918-933 CrossRef
    25. Kolattukudy PE, Dean B (1974) Structure, gas chromatographic measurement, and function of suberin synthesized by potato tuber tissue slices. Plant Physiol 54:116-21 CrossRef
    26. Krishnamurthy P, Ranathunge K, Franke R, Prakash HS, Schreiber L, Mathew MK (2009) The role of root apoplastic transport barriers in salt tolerance of rice ( / Oryza sativa L.). Planta 230:119-34 CrossRef
    27. Lee S, Jung S, Go Y, Kim H, Kim J, Cho H, Park OK, Suh M (2009) Two / Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J 60:462-75 CrossRef
    28. Li Y, Beisson F, Ohlrogge J, Pollard M (2007) Monoacylglycerols are components of root waxes and can be produced in the aerial cuticle by ectopic expression of a suberin-associated acyltransferase. Plant Physiol 144:1267-277 CrossRef
    29. Mattinen M, Filpponen I, J?rvinen R, Li B, Kallio H, Lehtinen P, Argyropoulos D (2009) Structure of the polyphenolic component of suberin isolated from potato ( / Solanum tuberosum var. Nikola). J Agri Food Chem 57:9747-753 CrossRef
    30. Matzke K, Riederer M (1991) A comparative study into the chemical constitution of cutins and suberins from / Picea abies (L.) Karst., / Quercus robur L., and / Fagus sylvatica L. Planta 185:233-45 CrossRef
    31. Meyer CJ (2010) Exodermal function and suberin chemistry. PhD dissertation, University of Waterloo, Canada
    32. Meyer CJ, Seago JL, Peterson CA (2009) Environmental effects on the maturation of the endodermis and multiseriate exodermis of / Iris germanica roots. Ann Bot 103:687-02 CrossRef
    33. Meyer CJ, Peterson CA, Steudle E (2011) Permeability of / Iris germanica’s multiseriate exodermis to water, NaCl and ethanol. J Exp Bot. doi:10.1093/jxb/erq380
    34. North G, Nobel P (1995) Hydraulic conductivity of concentric root tissues of / Agave deserti Engelm. under wet and drying conditions. New Phytol 130:47-7 CrossRef
    35. Perumalla CJ, Peterson CA, Enstone DE (1990) A survey of angiosperm species to detect hypodermal Casparian bands. I. Roots with a uniseriate hypodermis and epidermis. Bot J Linnean Soc 103:93-12 CrossRef
    36. Peterson CA (1987) The exodermal Casparian band of onion blocks apoplastic movement of sulphate ions. J Exp Bot 32:2068-081 CrossRef
    37. Peterson CA, Perumalla CJ (1990) A survey of angiosperm species to detect hypodermal Casparian bands. II. Roots with a multiseriate hypodermis or epidermis. Bot J Linnean Soc 103:113-25 CrossRef
    38. Ranathunge K, Schreiber L, Franke R (2010) Suberin research in the genomics era—new interest for an old polymer. Plant Sci. doi:10.1016/j.plantsci.2010.11.003
    39. Robards AW, Jackson SM, Clarkson DT, Sanderson J (1973) The structure of barley roots in relation to the transport of ions into the stele. Protoplasma 77:291-11 CrossRef
    40. Schreiber L (1996) Chemical composition of Casparian strips isolated from / Clivia miniata Reg. roots: evidence for lignin. Planta 199:596-01 CrossRef
    41. Schreiber L (2010) Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci 15:546-53 CrossRef
    42. Schreiber L, Breiner H, Riederer M, Düggelin M, Guggenheim R (1994) The Casparian strip of / Clivia miniata Reg. roots: isolation, fine structure and chemical nature. Botanica Acta 107:353-61
    43. Schreiber L, Franke R, Hartmann K (2005) Wax and suberin development of native and wound periderm of potato ( / Solanum tuberosum L.) and its relation to peridermal transpiration. Planta 220:520-30 CrossRef
    44. Seago JL, Marsh L (1989) Adventitious root development in / Typha glauca, with emphasis on the cortex. Am J Bot 76:909-23 CrossRef
    45. Seago JL, Peterson CA, Enstone DE, Scholey C (1999) Development of the endodermis and hypodermis of / Typha glauca Godr. and / Typha angustifolia L. roots. Can J Bot 77:122-34 CrossRef
    46. Serra O, Soler M, Hohn C, Franke R, Schreiber L, Prat S, Molinas M, Figueras M (2009a) Silencing of StKCS6 in potato periderm leads to reduced chain lengths of suberin and wax compounds and increased peridermal transpiration. J Exp Bot 60:697-07 CrossRef
    47. Serra O, Soler M, Hohn C, Sauveplane V, Pinot F, Franke R, Schreiber L, Prat S, Molinas M, Figueras M (2009b) CYP86A33-targeted gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm’s water barrier function. Plant Physiol 149:1050-060 CrossRef
    48. Soliday CL, Kolattukudy PE, Davis RW (1979) Chemical and ultrastructural evidence that waxes associated with the suberin polymer constitute the major diffusion barrier to water vapor in potato tuber ( / Solanum tuberosum L.). Planta 146:607-14 CrossRef
    49. Soukup A, Votrubová O, ?i?ková H (2002) Development of anatomical structure of roots of / Phragmites australis. New Phytol 153:277-87 CrossRef
    50. Soukup A, Armstrong W, Schreiber L, Franke R, Votrubová O (2007) Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, / Phragmites australis and / Glyceria maxima. New Phytol 173:264-78 CrossRef
    51. Thomas R, Fang X, Ranathunge K, Anderson TR, Peterson CA, Bernards MA (2007) Soybean root suberin: anatomical distribution, chemical composition, and relationship to partial resistance to / Phytophthora sojae. Plant Physiol 144:299-11 CrossRef
    52. Van Fleet D (1961) Histochemistry and function of the endodermis. Botanical Rev 27:165-21 CrossRef
    53. Vogt E, Sch?nherr J, Schmidt H (1983) Water permeability of periderm membranes isolated enzymatically from potato tubers ( / Solanum tuberosum L.). Planta 158:294-01 CrossRef
    54. Yang W, Bernards MA (2006) Wound-induced metabolism in potato ( / Solanum tuberosum) tubers. Plant Signal Behav 1:59-6 CrossRef
    55. Zeier J, Schreiber L (1997) Chemical composition of hypodermal and endodermal cell walls and xylem vessels isolated from / Clivia miniata: identification of the biopolymers lignin and suberin. Plant Physiol 113:1223-231
    56. Zeier J, Schreiber L (1998) Comparative investigation of primary and tertiary endodermal cell walls isolated from the roots of five monocotyledoneous species: chemical composition in relation to fine structure. Planta 206:349-61 CrossRef
    57. Zeier J, Schreiber L (1999) Fourier transform infrared-spectroscopic characterisation of isolated endodermal cell walls from plant roots: chemical nature in relation to anatomical development. Planta 209:452-37
    58. Zeier J, Goll A, Yokoyama M, Karahara I, Schreiber L (1999a) Structure and chemical composition of endodermal and rhizodermal/hypodermal walls of several species. Plant Cell Environ 22:271-79 CrossRef
    59. Zeier J, Ruel K, Ryser U, Schreiber L (1999b) Chemical analysis and immunolocalisation of lignin and suberin in endodermal and hypodermal/rhizodermal cell walls of developing maize ( / Zea mays L.) primary roots. Planta 209:1-2 CrossRef
    60. Zimmermann HM, Hartmann K, Schreiber L, Steudle E (2000) Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots ( / Zea mays L.). Planta 210:302-11 CrossRef
  • 作者单位:Chris J. Meyer (1)
    Carol A. Peterson (1)
    Mark A. Bernards (2)

    1. Department of Biology, University of Waterloo, Waterloo, ON, Canada
    2. Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
文摘
Iris germanica roots develop a multiseriate exodermis (MEX) in which all mature cells contain suberin lamellae. The location and lipophilic nature of the lamellae contribute to their function in restricting radial water and solute transport. The objective of the current work was to identify and quantify aliphatic suberin monomers, both soluble and insoluble, at specific stages of MEX development and under differing growth conditions, to better understand aliphatic suberin biosynthesis. Roots were grown submerged in hydroponic culture, wherein the maturation of up to three exodermal layers occurred over 21?days. In contrast, when roots were exposed to a humid air gap, MEX maturation was accelerated, occurring within 14?days. The soluble suberin fraction included fatty acids, alkanes, fatty alcohols, and ferulic acid, while the suberin poly(aliphatic) domain (SPAD) included fatty acids, α,ω-dioic acids, ω-OH fatty acids, and ferulic acid. In submerged roots, SPAD deposition increased with each layer, although the composition remained relatively constant, while the composition of soluble components shifted toward increasing alkanes in the innermost layers. Air gap exposure resulted in two significant shifts in suberin composition: nearly double the amount of SPAD monomers across all layers, and almost three times the alkane accumulation in the first layer. The localized and abundant deposition of C18:1 α,ω-dioic and ω-OH fatty acids, along with high accumulation of intercalated alkanes in the first mature exodermal layer of air gap-exposed roots indicate its importance for water retention under drought compared with underlying layers and with entire layers developing under water.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700