Design and Characteristics of a Laminar Plasma Torch for Materials Processing
详细信息    查看全文
  • 作者:Xiuquan Cao ; Deping Yu ; Meng Xiao ; Jianguo Miao…
  • 关键词:Laminar plasma torch ; Laminar plasma jet ; Specific enthalpy ; Jet length ; Materials processing
  • 刊名:Plasma Chemistry and Plasma Processing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:36
  • 期:2
  • 页码:693-710
  • 全文大小:4,346 KB
  • 参考文献:1.Mostaghimi J, Boulos MI (2015) Thermal plasma sources: how well are they adopted to process needs? Plasma Chem Plasma Process 35:421–436CrossRef
    2.Vardelle A, Moreau C, Themelis NJ, Chazelas C (2015) A perspective on plasma spray technology. Plasma Chem Plasma Process 35:491–509CrossRef
    3.Shigeta M, Murphy AB (2011) Thermal plasmas for nanofabrication. J Phys D Appl Phys 44:4025–4040CrossRef
    4.Murphy AB (2015) A perspective on arc welding research: the importance of the arc, unresolved questions and future directions. Plasma Chem Plasma Process 35:471–489CrossRef
    5.Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta Part B 61:2–29CrossRef
    6.Venkataramani N (2002) Industrial plasma torches and applications. Curr Sci 83:254–262
    7.Zhukov MF, Zasypkin IM (2007) Thermal plasma torches design: characteristics, application. Cambridge International Science Publishing, Cambridge
    8.Pan W, Zhang W, Ma W, Wu C (2002) Characteristics of argon laminar DC plasma jet at atmospheric pressure. Plasma Chem Plasma Process 22:271–283CrossRef
    9.Hu M, Wan S, Xia Y, Ren Z, Wang H (2013) Effect of an external magnetic field on plasma torch discharge fluctuation. Europhys Lett 102:5002–5006CrossRef
    10.Dorier JL, Hollenstein C, Salito A, Loch M, Barbezat G (2001) Characterization and origin of arc fluctuations in a F4 DC plasma torch used for thermal spraying. High Temp Mater Process (New York) 5:477–489
    11.Kim S, Heberlein J, Lindsay J, Peters J (2010) Methods to evaluate arc stability in plasma arc cutting torches. J Phys D Appl Phys 43:5202–5212
    12.Tu X, Chéron BG, Yan JH, Cen KF (2007) Dynamic behaviour of Dc double anode plasma torch at atmospheric pressure. J Phys D Appl Phys 40:3972–3979CrossRef
    13.Hlina J, Gruber J, Sonsky J (2012) Asymmetry and frequency characteristics of instabilities in a thermal plasma jet. IEEE Trans Plasma Sci 40:2795–2799CrossRef
    14.Coudert JF, Rat V (2008) Influence of configuration and operating conditions on the electric arc instabilities of a plasma spray torch: role of acoustic resonance. J Phys D Appl Phys 41:5208–5217CrossRef
    15.Pan W, Zhang W, Zhang W, Wu C (2001) Generation of long, laminar plasma jets at atmospheric pressure and effects of flow turbulence. Plasma Chem Plasma Process 21:23–35CrossRef
    16.Osaki K, Fukumasa O, Kobayashi A (2000) High thermal efficiency-type laminar plasma jet generator for plasma processing. Vacuum 59:47–54CrossRef
    17.Krowka J, Rat V, Coudert JF (2013) Investigation and control of Dc arc jet instabilities to obtain a self-sustained pulsed laminar arc jet. J Phys D Appl Phys 46:5206–5218
    18.Miao J, Yu D, Cao X, Xiang Y, Xiao M, Yao J (2015) Experimental study on the characteristics of a miniature laminar plasma torch with different gas flow patterns. Plasma Chem Plasma Process 35:879–893CrossRef
    19.Zhou Q (1981) Plasma spraying technology. Jiangsu Science and Technology Press, Jiangsu (in Chinese)
    20.Marqués JL, Forster G, Schein J (2009) Multi-electrode plasma torches: motivation for development and current state-of-the-art. Open Plasma Phys J 2:89–98CrossRef
    21.Solonenko OP, Smirnov AV (2014) Advanced oxide powders processing based on cascade plasma. J Phys: Conf Ser 550:1–10
    22.J. R. Roth, (1995) Industrial Plasma Engineering Volume 1: Principles, Institute of Physics Publishing, Bristol and Philadelphia.
  • 作者单位:Xiuquan Cao (1)
    Deping Yu (1)
    Meng Xiao (1)
    Jianguo Miao (1)
    Yong Xiang (1)
    Jin Yao (1)

    1. School of Manufacturing Science and Engineering, Sichuan University, Chengdu, 610065, China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mechanics
    Characterization and Evaluation Materials
    Mechanical Engineering
    Inorganic Chemistry
    Nuclear Physics, Heavy Ions and Hadrons
  • 出版者:Springer Netherlands
  • ISSN:1572-8986
文摘
Thermal plasma jets have been widely used in various materials processing techniques. However, the conventional thermal plasma torches usually generate turbulent plasma jets with the disadvantages of high axial temperature gradient, a short jet length and difficulties in the process control relatively, limiting its applications to materials processing. Therefore, this paper proposes a new laminar plasma torch (LPT) working with pure nitrogen to generate laminar plasma jet (LPJ). Its design and structural characteristics, e.g. segmented anode, axial gas injection, parallel water cooling structure, etc., are detailed to ensure the stability, the favorable temperature and velocity distribution of the generated LPJ. Experiments on the characteristics of the LPT showed that the generated LPJ possessed high specific enthalpy (ranging between 10 and 90 kJ/g), long jet length (maximum length: 480 mm) and low axial temperature gradient, and its output power a current and the gas flow rate. In addition, the thermal efficiency of the LPT was experimentally determined to be ranging between 25 and 45 %. Furthermore, experiment and simulation on the application of the LPJ for surface quenching verified the even radial temperature distribution of the plasma jet and high heat flux density brought to the surface. Keywords Laminar plasma torch Laminar plasma jet Specific enthalpy Jet length Materials processing

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700