Multi-criteria technique for mapping of debris-covered and clean-ice glaciers in the Shaksgam valley using Landsat TM and ASTER GDEM
详细信息    查看全文
  • 作者:Alifu Haireti ; Ryutaro Tateishi ; Bayan Alsaaideh…
  • 关键词:Remote sensing ; Glacier inventory ; Shaksgam valley ; Landsat TM ; ASTER GDEM
  • 刊名:Journal of Mountain Science
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:13
  • 期:4
  • 页码:703-714
  • 全文大小:4,572 KB
  • 参考文献:Ball GH, Hall DJ (1965) A Novel Method of Data Analysis & Pattern Classification. Technical Report NTIS AD 699616. Stanford Research Institute, Stanford, CA. pp 4–31.
    Bhambri R, Bolch T (2009) Glacier mapping: a review with special reference to the Indian Himalayas. Progress in Physical Geography 33(5): 672–704. DOI: 10.1177/0309133309348112CrossRef
    Bhambri R, Bolch T, Chaujar RK (2011) Mapping of debriscovered glaciers in the Garhwal Himalayas using ASTER DEMs and thermal data. International Journal of Remote Sensing 32: 8095–8119. DOI: 10.1080/01431161.2010.532821CrossRef
    Bhambri R, Bolch T, Kawishwar P, et al. (2013) Heterogeneity in glacier response in the upper Shyok valley, northeast Karakoram. The Cryosphere 7: 1385–1398, DOI: 10.5194/tc-7-1385-2013CrossRef
    Bhardwaj A, Joshi PK, Singh MK, et al. (2014) Mapping debriscovered glaciers and identifying factors affecting the accuracy. Cold Regions Science and Technology 106: 161–174. DOI: 10.1016/j.coldregions.2014.07.006CrossRef
    Bishop MP, Bonk R, Kamp U, et al. (2001) Terrain analysis and data modeling for alpine glacier mapping. Polar Geography 25: 182–201. DOI: 10.1080/10889370109377712CrossRef
    Bolch T, Buchroithner MF, Kunert A, et al. (2007) Automated delineation of debris-covered glaciers based on ASTER data. Geoinformation in Europe, Proceedings of the 27th EARSeL Symposium, Bozen, Italy, June. pp 4–6.
    Bolch T, Kamp U (2006) Glacier mapping in high mountains using DEMs, Landsat and ASTER data. Eighth International Symposium on High Mountain Remote Sensing Cartography, La Paz, Bolivia. Vol 41, pp 37–48.
    Bolch T, Menounos B, Wheate R (2010) Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sensing of Environment 114(1): 127–137. DOI: 10.1016/j.rse.2009.08.015CrossRef
    Collier E, Maussion F, Nicholson LI, et al. (2015) Impact of debris cover on glacier ablation and atmosphere-glacier feedbacks in the Karakoram. The Cryosphere Discuss 9: 2259–2299. DOI: 10.5194/tcd-9-2259-2015CrossRef
    Copland L, Sylvetre T, Bishop MP, et al. (2011) Expanded and Recently increased Glacier Surging in the Karakoram. Arctic, Antarctic, and Alpine Research 43(4): 503. DOI: 10.1657/1938-4246-43.4.503CrossRef
    Fischer M, Huss M, Barboux C, et al. (2014) The new Swiss Glacier Inventory SGI2010: relevance of using highresolution source data in areas dominated by very small glaciers. Arctic, Antarctic, and Alpine Research 46(4): 933–945. DOI: 10.1657/1938-4246-46.4.933CrossRef
    Guo W, Liu S, Xu J, et al. (2015) The second Chinese glacier inventory: data, methods and results. Journal of Glaciology 61(226): 357. DOI: 10.3189/2015JoG14J209CrossRef
    Haeberli W, Hoelzle M, Paul F, et al. (2007) Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Annals of Glaciology 46(1): 150–160. DOI: 10.3189/172756407782871512CrossRef
    IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
    Karimi N, Farokhnia A, Karimi L, et al. (2012) Combining optical and thermal remote sensing data for mapping debriscovered glaciers (Alamkouh Glaciers, Iran). Cold Regions Science and Technology 71: 73–83. DOI: 10.1016/j.coldregions.2011.10.004CrossRef
    Krumwiede BS, Kamp U, Leonard GJ, et al. (2014) Recent glacier changes in the Mongolian Altai Mountains: case studies from Tavan Bogd and Munkh Khairkhan, Chapter 22. In: Kargel JS, Leonard GJ, Bishop MP, et al. (eds.), Global Land Ice Measurements from Space. Springer-Praxis, Heidelberg. pp 481–508. ISBN: 978-3-540-79817-0, e-ISBN: 978-3-540-79818-7
    Liu SY, Yao XJ, Guo WQ, et al. (2015) The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Cta Geographica Sinica 70(1): 3–16. DOI: 10.11821/dlxb201501001
    Mihalcea C, Mayer C, Diolaiuti G, et al. (2006) Ice ablation and meteorological conditions on the debris-covered area of Baltoro Glacier (Karakoram, Pakistan). Annals of Glaciology 43: 292–300. DOI: 10.3189/172756406781812104CrossRef
    Minora U, Senese A, Bocchiola D, et al. (2015) A simple model to evaluate ice melt over the ablation area of glaciers in the Central Karakoram National Park, Pakistan. Annals of Glaciology 56 (70): 202–216. DOI: 10.3189/2015AoG70A206.CrossRef
    Paul F (2000) Evaluation of different methods for glacier mapping using Landsat TM. Proceedings of EARSeL-SIGWorkshop Land Ice and Snow, June 16–17, Dresden/Germany. pp 239–245.
    Paul F (2002) Changes in glacier area in Tyrol, Austria, between 1969 and 1992 derived from Landsat 5 TM and Austrian Glacier Inventory data. International Journal of Remote Sensing 23 (4): 787–799. DOI: 10.1080/0143116011007070CrossRef
    Paul F, Barrand NE, Baumann S, et al. (2013) On the accuracy of glacier outlines derived from remote sensing data. Annals of Glaciology 54 (63): 171–182. DOI: 10.3189/2013Ao G63A296CrossRef
    Paul F, Kääb A, Haeberli W (2007) Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies. Global and Planetary Change 56(1): 111–122. DOI: 10.1016/j.gloplacha.2006.07.007CrossRef
    Paul F, Kääb A, Maisch M, et al. (2002) The new remotesensing-derived Swiss glacier inventory: I. Methods, Annals of Glaciology 34: 355–361. DOI: 10.3189/172756402781817941.CrossRef
    Pfeffer WT, Arendt AA, Bliss A, et al. (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journal of Glaciology 60(221): 537–552 DOI: 10.3189/2014JoG13J176CrossRef
    Pratap B, Dobhal DP, Mehta M, Bhambri R (2015) Influence of debris cover and altitude on glacier surface melting: a case study on Dokriani Glacier, Central Himalaya, India. Annals of Glaciology 56(70): 9–16. DOI: 10.3189/2015AoG70A971CrossRef
    Racoviteanu AE, Paul F, Raup B, et al. (2009) Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Annals of Glaciology 50(53): 53–69. DOI: 10.3189/172756410790595804CrossRef
    Rankl M, Kienholz C, BRAUN M (2014) Glacier changes in the Karakoram Region mapped by multi-mission satellite imagery. The Cryosphere 8: 977–989. DOI: 10.5194/tc-8-977CrossRef
    Ranzi R, Grossi G, Iacovelli L, et al. (2004) Use of multispectral ASTER images for mapping debris-covered glaciers within the GLIMS project. IEEE Transactions on Geoscience and Remote Sensing Symposium, vol. 2, pp 1144–1147.
    Raup BH, Kääb A, Kargel JS, et al. (2007) Remote Sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project. Computers and Geosciences 33(1): 104–125. DOI: 10.1016/j.cageo.2006.05.015CrossRef
    Richards JA, Jia X (1999) Remote sensing digital image analysis (Vol. 3). Berlin: Springer-Verlag. pp 249–263.CrossRef
    Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geosciences 4(3): 156–159. DOI: 10.1038/NGEO1068CrossRef
    Shi Y, Liu S, Ye B, et al. (2008) Concise glacier inventory of China. Shanghai, Shanghai Popular Science, Shanghai, China. pp 65–71.
    Shukla A, Arora MK, Gupta RP (2010) Synergistic approach for mapping debris covered glaciers using optical-thermal remote sensing data with inputs from geomorphometric parameters. Remote Sensing of Environment 114(7): 1378–1387. DOI: 10.1016/j.rse.2010.01.015CrossRef
    Sinha R, Ravindra R (2013) Earth system processes and disaster management. Springer. pp 38–39.CrossRef
    Tachikawa T, Kaku M, Iwasaki A, et al. (2011) ASTER Global Digital Elevation Model Version 2–Summary of Validation Results. ASTER GDEM Validation Team.
    Veettil BK, Bremer UF, Grondona AEB, et al. (2014) Recent changes occurred in the terminus of the debris-covered Bilafond Glacier in the Karakoram Himalayas using remotely sensed images and digital elevation models (1978-2011). Journal of Mountain Science 11(2): 398–406. DOI: 10.1007/s11629-013-2677-6CrossRef
  • 作者单位:Alifu Haireti (1)
    Ryutaro Tateishi (2)
    Bayan Alsaaideh (2)
    Saeid Gharechelou (2)

    1. Geosystem and Biological Sciences Division, Graduate Schools of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
    2. Center for Environmental Remote Sensing, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
  • 刊物主题:Earth Sciences, general; Geography (general); Environment, general; Ecology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1993-0321
文摘
Glaciers in the Shaksgam valley provide important fresh water resources to neighbourhood livelihood. Repeated creation of the glacier inventories is important to assess glacier–climate interactions and to predict future runoff from glacierized catchments. For this study, we applied a multi-criteria technique to map the glaciers of the Shaksgam valley of China, using Landsat Thematic Mapper (Landsat TM) (2009) and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model version two (ASTER GDEM V2) data. The geomorphometric parameters slope, plan, and profile curvature were generated from ASTER GDEM. Then they were organized in similar surface groups using cluster analysis. For accurate mapping of supraglacial debris area, clustering results were combined with a thermal mask generated from the Landsat TM thermal band. The debris-free glaciers were identified using the band ratio (TM band 4/TM band 5) technique. Final vector maps of the glaciers were created using overlay tools in a geographic information system (GIS). Accuracy of the generated glacier outlines was assessed through comparison with glacier outlines based on the Second Chinese Glacier Inventory (SCGI) data and glacier outlines created from high-resolution Google Earth™ images of 2009. Glacier areas derived using the proposed approach were 3% less than in the reference datasets. Furthermore, final glacier maps show satisfactory mapping results, but identification of the debris-cover glacier terminus (covered by thick debris layer) is still problematic. Therefore, manual editing was necessary to improve the final glacier maps.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700